OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 11 — May. 26, 2008
  • pp: 7756–7766

Optical resonances of bowtie slot antennas and their geometry and material dependence

Hongcang Guo, Todd P. Meyrath, Thomas Zentgraf, Na Liu, Liwei Fu, Heinz Schweizer, and Harald Giessen  »View Author Affiliations


Optics Express, Vol. 16, Issue 11, pp. 7756-7766 (2008)
http://dx.doi.org/10.1364/OE.16.007756


View Full Text Article

Enhanced HTML    Acrobat PDF (348 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In order to provide a guide for the design and optimization of bowtie slot antennas in the visible and near infrared spectral regime, their optical properties have been investigated with emphasis on geometry and materials. Although primarily theoretical, experimental investigations for reduced thickness cases are also included. As characterized by their field patterns, two types of resonances are discussed: plasmonic and Fabry-Pérot-like resonances. These resonance types show a linear dependence on aperture perimeter and film thickness, respectively, while showing a complementary behavior with near independence of the other respective parameter. Metal properties, as in the Drude model, are also considered. Various metals with respectively different skin depths are studied, showing a nearly linear dependence of the resonance wavelength on skin depth.

© 2008 Optical Society of America

OCIS Codes
(160.4760) Materials : Optical properties
(230.5750) Optical devices : Resonators
(240.6680) Optics at surfaces : Surface plasmons
(260.3910) Physical optics : Metal optics
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Physical Optics

History
Original Manuscript: March 28, 2008
Revised Manuscript: May 6, 2008
Manuscript Accepted: May 7, 2008
Published: May 14, 2008

Citation
Hongcang Guo, Todd P. Meyrath, Thomas Zentgraf, Na Liu, Liwei Fu, Heinz Schweizer, and Harald Giessen, "Optical resonances of bowtie slot antennas and their geometry and material dependence," Opt. Express 16, 7756-7766 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-11-7756


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. D. Grober, R. J. Schoelkopf, and D. E. Prober, "Optical antenna: Towards a unity efficiency near-field optical probe," Appl. Phys. Lett. 70, 1354 (1997). [CrossRef]
  2. K. Sendur and W. Challener, "Near-field radiation of bow-tie antennas and apertures at optical frequencies," J. Microsc. 210, 279 (2002). [CrossRef]
  3. K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, "Optical antennas: Resonators for local field enhancement," J. Appl. Phys. 94, 4632 (2003). [CrossRef]
  4. J. S. Shumaker-Parry, H. Rochholz, and M. Kreiter, "Fabrication of crescent-shaped optical antennas," Adv. Mater. 17, 1231 (2005). [CrossRef]
  5. P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, "Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas," Phys. Rev. Lett. 94, 017402 (2005). [CrossRef] [PubMed]
  6. P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant optical antennas," Science 308, 1607 (2005). [CrossRef] [PubMed]
  7. J. J. Greffet, "Nanoantennas for light emission," Science 308, 1561 (2005). [CrossRef] [PubMed]
  8. L. Novotny, "Effective wavelength scaling for optical antennas," Phys. Rev. Lett. 98, 266802 (2007). [CrossRef] [PubMed]
  9. X. Shi, L. Hesselink, and R. L. Thornton, "Ultrahigh light transmission through a C-shaped nanoaperture," Opt. Lett. 28, 1320-1322 (2003). [CrossRef] [PubMed]
  10. E. X. Jin and X. Xu, "Finit-Difference Time-Domain studies on optical transmission through planar nanoapertures in a Metal film," Jpn. J. Appl. Phys. 43, 407 (2004). [CrossRef]
  11. E. X. Jin and X. Xu, "Plasmonic effects in near-filed optical transmission enhancement through a single bowtieshaped aperture," Appl. Phys. B. 84, 3 (2006). [CrossRef]
  12. K. Ishihara, K. Ohashi, T. Ikari, H. Minamide, H. Yokoyama, J. Shikata, and H. Ito, "Terahertz-wave near-field imaging with subwavelength resolution using surface-wave-assistanted bow-tie aperture," Appl. Phys. Lett. 89, 201120 (2006). [CrossRef]
  13. L. Wang, S. M. Uppuluri, E. X. Jin, and X. Xu, "Nanolithography using high transmission nanoscale bowtie apertures," Nano Lett. 6, 361 (2006). [CrossRef] [PubMed]
  14. L. Wang and X. Xu, "High transmission nanoscale bowtie-shaped aperture probe for near-field optical imaging," Appl. Phys. Lett. 90, 261105 (2007). [CrossRef]
  15. L. Wang and X. Xu, "Spectral resonance of nanoscale bowtie apertures in visible wavelength," Appl. Phys. A 89, 293 (2007). [CrossRef]
  16. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, Jr., and C. A. Ward, "Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared," Appl. Opt. 22, 1099-1120 (1983). [CrossRef] [PubMed]
  17. B. A. Munk, Frequency Selective Surfaces: Theory and Design (John Wiley & Sons, Inc., New York, 2000). [CrossRef]
  18. U. Kreibig, M. Vollmer, Optical Properties of Metal Clusters (Springer, Berlin, 1995).
  19. C. Rockstuhl, F. Lederer, C. Etrich, T. Zentgraf, J. Kuhl, and H. Giessen, "On the reinterpretation of resonances in split-ring-resonators at normal incidence," Opt. Express 14, 8827 (2006). [CrossRef] [PubMed]
  20. J. Kottmann, O. Martin, D. Smith, and S. Schultz, "Spectral response of plasmon resonant nanoparticles with a non-regular shape," Opt. Express 6, 21 (2000). [CrossRef]
  21. F. J. Garcia-Vidal, E. Moreno, J. A. Porto, and L. Martin-Moreno, "Transmission of light through a single rectangular hole," Phys. Rev. Lett. 95, 103901 (2005). [CrossRef]
  22. K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, "Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory," Phys. Rev. B 72, 045421 (2005). [CrossRef]
  23. J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, "Transmission resonances on metallic gratings with very narrow slits," Phys. Rev. Lett. 83, 2845 (1999). [CrossRef]
  24. S. Astilean, Ph. Lalanne, and M. Palamaru, "Light transmission through metallic channels much smaller than the wavelength," Opt. Commun. 175, 265 (2000). [CrossRef]
  25. J. Lindberg, K. Lindfors, T. Setl, and A. T. Friberg, "Spectral analysis of resonant transmission of light through a single sub-wavelength slit," Opt. Express 12, 623 (2004). [CrossRef] [PubMed]
  26. J. A. Matteo, D. P. Fromm, Y. Yuen, P. J. Schuck, W. E. Moerner, and L. Hesselink, "Spectral analysis of strongly enhanced visible light transmission through single C-shaped nanoapertures," Appl. Phys. Lett. 85, 648 (2004). [CrossRef]
  27. L. Sun and L. Hesselink, "Low-loss subwavelength metal C-aperture waveguide," Opt. Lett. 31, 3606 (2006). [CrossRef] [PubMed]
  28. C. Genet and T. W. Ebbesen, "Light in tiny holes," Nature 445,39 (2007). [CrossRef] [PubMed]
  29. N. W. Ashcroft and N. D. Mermin, Solid State Physics (Saunders College Publishing, Fort Worth, 1976).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited