OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 11 — May. 26, 2008
  • pp: 7915–7928

Realtime photoacoustic microscopy in vivo with a 30-MHz ultrasound array transducer

Roger J. Zemp, Liang Song, Rachel Bitton, K. Kirk Shung, and Lihong V. Wang  »View Author Affiliations

Optics Express, Vol. 16, Issue 11, pp. 7915-7928 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (2337 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a novel high-frequency photoacoustic microscopy system capable of imaging the microvasculature of living subjects in realtime to depths of a few mm. The system consists of a high-repetition-rate Q-switched pump laser, a tunable dye laser, a 30-MHz linear ultrasound array transducer, a multichannel high-frequency data acquisition system, and a shared-RAM multi-core-processor computer. Data acquisition, beamforming, scan conversion, and display are implemented in realtime at 50 frames per second. Clearly resolvable images of 6-µm-diameter carbon fibers are experimentally demonstrated at 80 µm separation distances. Realtime imaging performance is demonstrated on phantoms and in vivo with absorbing structures identified to depths of 2.5–3 mm. This work represents the first high-frequency realtime photoacoustic imaging system to our knowledge.

© 2008 Optical Society of America

OCIS Codes
(110.5100) Imaging systems : Phased-array imaging systems
(110.5120) Imaging systems : Photoacoustic imaging
(110.7170) Imaging systems : Ultrasound
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.3890) Medical optics and biotechnology : Medical optics instrumentation

ToC Category:
Imaging Systems

Original Manuscript: January 4, 2008
Revised Manuscript: February 7, 2008
Manuscript Accepted: February 14, 2008
Published: May 19, 2008

Virtual Issues
Vol. 3, Iss. 6 Virtual Journal for Biomedical Optics

Roger J. Zemp, Liang Song, Rachel Bitton, K. K. Shung, and Lihong V. Wang, "Realtime photoacoustic microscopy in vivo with a 30-MHz ultrasound array transducer," Opt. Express 16, 7915-7928 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. F. Massoud and S. S. Gambhir, "Molecular imaging in living subjects: seeing fundamental biological processes in a new light," Genes Dev. 17, 545-580 (2003). [CrossRef] [PubMed]
  2. C. Abbey, A. Borowsky, J. Gregg, E. McGoldrick, R. Cardiff, and S. Cherry, "Longitudinal correlations in a small-animal PET studies," Med. Phys. 32, 1901-1901 (2005). [CrossRef]
  3. P. A. Dayton and K. W. Ferrara, "Targeted imaging using ultrasound," J. Magn. Res. 16, 362-377 (2002). [CrossRef]
  4. O. Couture, P. D. Bevan, E. Cherin, K. Cheung, P. N. Burns, and F. S. Foster, "Investigating perfluorohexane particles with high-frequency ultrasound," Ultrasound. Med. Biol. 32, 73-82 (2006). [CrossRef]
  5. M. H. Xu and L. H. V. Wang, "Photoacoustic imaging in biomedicine," Rev. Sci. Instrum. 77, 041101 (2006). [CrossRef]
  6. A. Dunn and D. Boas, "Transport-based image reconstruction in turbid media with small source-detector separations," Opt. Lett. 25, 1777-1779 (2000). [CrossRef]
  7. E. M. C. Hillman, D. A. Boas, A. M. Dale, and A. K. Dunn, "Laminar optical tomography: demonstration of millimeter-scale depth-resolved imaging in turbid media," Opt. Lett. 29, 1650-1652 (2004). [CrossRef] [PubMed]
  8. G. Ku, X. D. Wang, X. Y. Xie, G. Stoica, and L. H. V. Wang, "Imaging of tumor angiogenesis in rat brains in vivo by photoacoustic tomography," Appl. Opt. 44, 770-775 (2005). [CrossRef] [PubMed]
  9. X. D. Wang, Y. J. Pang, G. Ku, X. Y. Xie, G. Stoica, and L. H. V. Wang, "Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain," Nat. Biotechnol. 21, 803-806 (2003). [CrossRef] [PubMed]
  10. K. Maslov, G. Stoica, and L. V. H. Wang, "In vivo dark-field reflection-mode photoacoustic microscopy," Opt. Lett. 30, 625-627 (2005). [CrossRef] [PubMed]
  11. H. F. Zhang, K. Maslov, G. Stoica, and L. H. V. Wang, "Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging," Nat. Biotechnol. 24, 848-851 (2006). [CrossRef] [PubMed]
  12. M. Sivaramakrishnan, K. Maslov, H. F. Zhang, G. Stoica, and L. V. Wang, "Limitations of quantitative photoacoustic measurements of blood oxygenation in small vessels," Phys. Med. Biol 52, 1349-1361 (2007). [CrossRef] [PubMed]
  13. X. D. Wang, X. Y. Xie, G. N. Ku, and L. H. V. Wang, "Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography," J. Biomed. Opt. 11, 024015 (2006). [CrossRef] [PubMed]
  14. L. Li, R. J. Zemp, G. Lungu, G. Stoica, and L. V. Wang, "Photoacoustic imaging of lacZ gene expression in vivo," J. Biomed. Opt. 12, 020504 (2007). [CrossRef] [PubMed]
  15. M. Li, J. Oh, X. X., G. Ku, W. Wang, C. Li, G. Lungu, G. Stoica, and L. V. Wang, "Simultaneous molecular and hypoxia imaging of brain tumors in vivo using spectroscopic photoacoustic tomography," Proc. IEEE 96, 481-489 (2008).
  16. J. J. Niederhauser, M. Jaeger, R. Lemor, P. Weber, and M. Frenz, "Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo," IEEE Trans. Med. Imag. 24, 436-440 (2005). [CrossRef]
  17. R. O. Esenaliev, A. A. Karabutov, and A. A. Oraevsky, "Sensitivity of laser opto-acoustic imaging in detection of small deeply embedded tumors," IEEE J. Select. Top. Quantum Electron. 5, 981-988 (1999). [CrossRef]
  18. A. A. Oraevsky, S. L. Jacques, and F. K. Tittel, "Measurement of tissue optical properties by time-resolved detection of laser-induced transient stress," Appl. Opt. 36, 402-415 (1997). [CrossRef] [PubMed]
  19. R. A. Kruger, W. L. Kiser, D. R. Reinecke, and G. A. Kruger, "Thermoacoustic computed tomography using a conventional linear transducer array," Med. Phys. 30, 856-860 (2003). [CrossRef] [PubMed]
  20. R. Kruger, W. Kiser, D. Reinecke, and G. Kruger, "Molecular imaging with thermoacoustic computed tomography," Med. Phys. 30, 1542-1542 (2003).
  21. E. Zhang, and P. Beard, "Broadband ultrasound field mapping system using a wavelength tuned, optically scanned focused laser beam to address a Fabry Perot polymer film sensor," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53, 1330-1338 (2006). [CrossRef] [PubMed]
  22. R. J. Zemp, R. Bitton, M. L. Li, K. K. Shung, G. Stoica, and L. V. Wang, "Photoacoustic imaging of the microvasculature with a high-frequency ultrasound array transducer," J. Biomed. Opt. 12, 010501 (2007). [CrossRef] [PubMed]
  23. J. M. Cannata, J. A. Williams, Q. F. Zhou, T. A. Ritter, and K. K. Shung, "Development of a 35-MHz piezo-composite ultrasound array for medical imaging," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53, 224-236 (2006). [CrossRef] [PubMed]
  24. R. Bitton, R. Zemp, L. Meng-Lin, J. Yen, L. H. Wang, and K. K. Shung, "Photoacoustic Microscopy with a 30 MHz Array and Receive System," in IEEE Ultrasonics Symposium (IEEE, 2006), pp. 389-392.
  25. K. Wall, and G. R. Lockwood, "Modern implementation of a realtime 3D beamformer and scan converter system," in Ultrasonics Symposium (2005), pp. 1400-1403.
  26. C. H. Hu, X. C. Xu, J. M. Cannata, J. T. Yen, and K. K. Shung, "Development of a real-time, high-frequency ultrasound digital beamformer for high-frequency linear array transducers," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53, 317-323 (2006). [CrossRef] [PubMed]
  27. G. E. Moore, "Cramming More Components Onto Integrated Circuits," Proc. IEEE 86, 82-85 (1998). [CrossRef]
  28. S. A. Telenkov, B. S. Tanenbaum, D. M. Goodman, J. S. Nelson, and T. E. Milner, "In vivo infrared tomographic imaging of laser-heated blood vessels," IEEE J. Sel. Top. Quantum Electron. 5, 1193-1199 (1999). [CrossRef]
  29. J. S. Nelson, T. E. Milner, B. S. Tanenbaum, D. M. Goodman, and M. J. C. VanGemert, "Infra-red tomography of port-wine-stain blood vessels in human skin," Lasers Med. Sci 11, 199-204 (1996). [CrossRef]
  30. D. Napolitano, C. Ching-Hua, G. W. McLaughlin, D. DeBusschere, L. Y. L. Mo, and J. Ting-Lan, "Zone-based B-mode imaging," in IEEE Ultrasonics Symposium, (IEEE, 2003), pp. 25-28.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (2508 KB)     
» Media 2: AVI (2989 KB)     
» Media 3: AVI (3180 KB)     
» Media 4: AVI (4139 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited