OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 11 — May. 26, 2008
  • pp: 7943–7957

Spectroscopical and mechanical characterization of normal and thalassemic red blood cells by Raman Tweezers

Anna Chiara De Luca, Giulia Rusciano, Rosanna Ciancia, Vincenzo Martinelli, Giuseppe Pesce, Bruno Rotoli, Lara Selvaggi, and Antonio Sasso  »View Author Affiliations

Optics Express, Vol. 16, Issue 11, pp. 7943-7957 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (662 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this work, the effects of thalassemia, a blood disease quite diffuse in the Mediterranean sea region, have been investigated at single cell level using a Raman Tweezers system. By resonant excitation of hemoglobin Raman bands, we have examined the oxygenation capability of β-thalassemic erythrocytes. A reduction of this fundamental erythrocyte function has been found. The measurements have been performed on a significant number of red blood cells; the relative statistical analysis is presented. Moreover, the response to photo-induced oxidative stress of diseased cells with respect to the normal ones has been analyzed. Finally, the deformability of thalassemic erythrocytes has been quantified by measuring the membrane shear modulus by using a double-trap system: the measurements have revealed an increase in membrane rigidity of more than 40%, giving evidence that the genetic defect associated to thalassemia, which manly relies on hemoglobin structure, also strongly affects the erythrocyte mechanical properties. Our results demonstrate that the developed set-up may have potential for the monitoring of blood diseases and their response to drug therapies.

© 2008 Optical Society of America

OCIS Codes
(170.1470) Medical optics and biotechnology : Blood or tissue constituent monitoring
(170.4520) Medical optics and biotechnology : Optical confinement and manipulation
(170.5660) Medical optics and biotechnology : Raman spectroscopy

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: January 15, 2008
Revised Manuscript: February 25, 2008
Manuscript Accepted: March 2, 2008
Published: May 19, 2008

Virtual Issues
Vol. 3, Iss. 6 Virtual Journal for Biomedical Optics

Anna Chiara De Luca, Giulia Rusciano, Rosanna Ciancia, Vincenzo Martinelli, Giuseppe Pesce, Bruno Rotoli, Lara Selvaggi, and Antonio Sasso, "Spectroscopical and mechanical characterization of normal and thalassemic red blood cells by Raman Tweezers," Opt. Express 16, 7943-7957 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, "Observation of a single-beam gradient force optical trap for dielectric particles," Opt. Lett. 11, 288-290 (1986). [CrossRef] [PubMed]
  2. A. Ashkin and J. M. Dziedzic, "Optical trapping and manipulation of virus and bacteria," Science 235, 1517-1520 (1987). [CrossRef] [PubMed]
  3. K. Svoboda, C. F. Schmidt, D. Branton, and S. M. Block, "Conformation and elasticity of the isolated red blood cell membrane skeleton," Biophys. J. 63, 784-793 (1992). [CrossRef] [PubMed]
  4. R. Petry, M. Schmitt, and J. Popp, "Raman spectroscopy - a prospective tool in the life sciences," Chem. Phys. Chem. 4, 15-30 (2003). [CrossRef]
  5. P. J. Lambert, A. G. Whitman, O. F. Dyson, and S. M. Akula, "Raman spectroscopy: the gateway into tomorrow�??s virology," J. Virol. 3, 1-8 (2006). [CrossRef]
  6. C. M. Harris, "Raman revisited," Anal Chem. 74, 433A-438A (2002). [CrossRef] [PubMed]
  7. M. Dekker, Infrared and Raman spectroscopy of biological materials, (H.U. Gremlich and B. Yan, New York, 2001).
  8. J. M. Salter, "The effect of radiation trapping of high intensity scattered radiation on multiphoton ionization rates and resonance fluorescence," J. Phys. B: Atom. Molec. Phys. 12, L763-L767 (1979). [CrossRef]
  9. Y. Liu, G. J. Sonek, M. K. Berns, K. Konig, and B. J. Brock, "Two-photon fluorescence excitation in continuouswave infrared optical tweezers," Opt. Lett. 20, 2246-2248 (1995). [CrossRef] [PubMed]
  10. M. P. Houlne, C. M. Sjostrom, R. H. Uibel, J. A. Kleimeyer, and J. M. Harris, "Confocal Raman Microscopy for Monitoring Chemical Reactions on Single Optically Trapped, Solid-Phase Support Particles," Anal. Chem. 74, 4311-4319 (2002). [CrossRef] [PubMed]
  11. J. C. Carls, G. Monaivais, and J. R. Brock, "Time-resolved Raman Spectroscopy from reacting optically levitated microdroplets," Appl. Opt. 29, 2913-2918 (1990). [CrossRef] [PubMed]
  12. M. Lankers, J. Popp, and W. Kiefer, "Raman and Fluorescence Spectra of Single Optically-Trapped Microdroplets in Emulsionsby," Appl. Spectrosc. 48, 1166-1168 (1994). [CrossRef]
  13. K. Ajito, "Combined Near-Infrared Raman Microprobe and Laser Trapping System: Application to the Analysis of a Single Organic Microdroplet in Water," Appl. Spectrosc. 52, 339-342 (1998). [CrossRef]
  14. K. Ajito and K. Torimitsu, "Near-infrared Raman spectroscopy of single particles," Trends Anal. Chem. 20, 255-262 (2001). [CrossRef]
  15. G. J. Thomas, "Raman spectroscopy of protein and nucleic acid assemblies," Annu. Rev. Biophys. Biomol. Struct. 28, 1-27 (1999). [CrossRef] [PubMed]
  16. J. W. Chan, D. S. Taylor, T. Zwerdling, S. M. Lane, K. Ihara, and T. Huser, "Micro-Raman spectroscopy detects individual neoplastic and normal hematopoietic cells," Biophys. J. 90, 648-656 (2006). [CrossRef]
  17. G. Rusciano, A. C. De Luca, G. Pesce, and A. Sasso, "Phase-sensitive detection in Raman tweezers," Appl. Phys. Lett. 89, 261116-261118 (2006). [CrossRef]
  18. C. M. Creely, G. P. Singh, and D. V. Petrov, "Dual wavelength optical tweezers for confocal Raman spectroscopy," Opt. Commun. 245, 465-470 (2005). [CrossRef]
  19. D. Cojoc, E. Ferrari, V. Gabin, and E. Di Fabrizio, "Multiple optical tweezers for micro Raman spectroscopy," Proc. SPIE 5930, 59300B1-11 (2005).
  20. P. R. T. Jess, V. Garcs-Chvez, D. Smith, M. Mazilu, L. Paterson, A. Riches, C. S. Herrington, W. Sibbett, and K. Dholakia, "Dual beam fibre trap for Raman micro-spectroscopy of single cells," Opt. Express 14, 5779-5791 (2006). [CrossRef] [PubMed]
  21. G. P. Singh, G. Volpe, C. M. Creely, H. Grötsch, I. M. Geli, and D. Petrov, "The lag phase and G1 phase of a single yeast cell monitored by Raman microspectroscopy," J. Raman Spectrosc. 37, 858-864 (2006). [CrossRef]
  22. C. Creely, G. Volpe, G. Singh, M. Soler, and D. Petrov, "Raman imaging of floating cells," Opt. Express 13, 6105-6110 (2005). [CrossRef] [PubMed]
  23. C. Xie, M. A. Dinno, and Y.-Q. Li, "Near-infrared Raman spectroscopy of single optically trapped biological cells," Opt. Lett. 27, 249-251 (2002). [CrossRef]
  24. C. Xie and Y.-Q. Li, "Confocal micro-Raman spectroscopy of single biological cells using optical trapping and shifted excitation difference techniques," J. Appl. Phys. 93, 2982-2986 (2003). [CrossRef]
  25. C. Xie, C. Goodman, M. Dinno, and Y.-Q. Li, "Real-time Raman spectroscopy of optically trapped living cells and organelles," Opt. Express 12, 6208-6214 (2004). [CrossRef] [PubMed]
  26. C. Xie, D. Chen, and Y.-Q. Li, "Raman sorting and identification of single living micro-organisms with optical tweezers," Opt. Lett. 30, 1800-1802 (2005). [CrossRef] [PubMed]
  27. T. G. Spiro and X-Y. Li, Biological Application of Raman Spectroscopy (Wiley, New York, 1988).
  28. H. Brunner, A. Mayer, and H. Sussner, "Resonance Raman Scattering on the heam group of the oxy- and deoxyhaemogloin," J. Mol. Biol. 70, 153-156 (1972). [CrossRef] [PubMed]
  29. B. R. Wood, B. Tait, and D. McNaughton, "Micro-Raman characterization of the R to T state transition of haemoglobin within a single living erythrocyte," Biochem. Biophys. Acta 1539, 58-70 (2001). [CrossRef] [PubMed]
  30. B. R. Wood, P. Caspers, G. J. Pupples, S. Pandiancherri, and D. McNaughton, "Resonance Raman Spectroscopy of red blood cell using near-infrared laser excitation," Anal. Bioanal. Chem. 387, 1691-1703 (2007). [CrossRef]
  31. K. Ramser, K. Logg, M. Gokör, M. Käll, and D. Hanstorp, "Resonance Raman spectroscopy of optically trapped functional erythrocytes," J. Biomed. Opt. 9, 593-600 (2004). [CrossRef] [PubMed]
  32. B. R. Wood and D. McNaughton, "Raman excitation wavelength investigation of single red blood cell in vivo," J. Raman Spectrosc. 33, 517-523 (2002). [CrossRef]
  33. I. P. Torres Filho, J. Terner, R. N. Pittman, L. G. Somera, and K. R. Ward, "Hemoglobin oxygen saturation measurements using resonance Raman intravital microscopy," Am. J. Physiol. Heart Circ. Physiol. 289, 488-495 (2004). [CrossRef]
  34. K. Ramser, J. Enger, M. Gokör, D. Hanstorp, K. Logg, and M. Käll, "A microfluidic system enabling Raman measurements of the oxygenation cycle in single optically trapped red blood cells," Lab Chip 5, 431-436 (2005). [CrossRef] [PubMed]
  35. R. L. McCreery, "Raman Shift Frequency Standards: Polystyrene," http://www.chemistry.ohio-state.edu/~rmccreer/freqcorr/images/poly.html.
  36. G. Rusciano, A. C. De Luca, G. Pesce, and A. Sasso, "Enhancing Raman Tweezers by phase-sensitive detection," Anal. Chem. 79, 3708-3715 (2007). [CrossRef] [PubMed]
  37. M. Abe, T. Kitagawa, and Y. Kyogoku, "Resonance Raman spectra of octaethylporphyrinato-Ni(II) and mesodeuterated and 15N substituted derivatives. II. A normal coordinate analysis," J. Chem. Phys. 69, 4526-4531 (1978). [CrossRef]
  38. S. Hu, K. M. Smith, and T. G. Spiro, "Assignment of Protoheme Resonance Raman Spectrum by Heme Labeling in Myoglobin" J. Am. Chem. Soc. 118, 12638-12646 (1996). [CrossRef]
  39. I. Kahane, A. Shifter, and E. A. Rachmilewitz, "Cross linking of red blood cells membrane proteins induced by oxidative stress in beta-thalassemia," FEBS Lett. 85, 267-270 (1978). [CrossRef] [PubMed]
  40. E. A. Rachmilewitz, B. M. Lubin, and S. B. Shohet, "Lipid membrane peroxidation in beta-thalassemia," Blood 47, 495-505 (1976). [PubMed]
  41. E. Shinar, E. A. Rachmilewitz, and S. E. Lux, "Differing erythrocyte membrane skeletal protein defects in alpha and beta thalassemia," J. Clin. Invest. 83, 404-410 (1989). [CrossRef] [PubMed]
  42. S. K. Boey, D. H. Boal, and D. E. Discher, "Simulations of the erythrocyte cytoskeleton at large deformation. I. Microscopic models," Biophys. J. 75, 1573-1583 (1998). [CrossRef] [PubMed]
  43. D. E. Discher, D. H. Boal, and S. K. Boey, "Simulations of the erythrocyte cytoskeleton at large deformation. II. Micropipette aspiration," Biophys. J. 75, 1584-1597 (1998). [CrossRef] [PubMed]
  44. J. Li, M. Dao, C. T. Lim, and S. Suresh, "Spectrin-level modeling of the cytoskeleton and optical tweezers stretching of the erythrocyte," Biophys. J. 88, 3707-3719 (2005). [CrossRef] [PubMed]
  45. G. Lenormand, S. Hénon, A. Richert, and F. Gallet, "Direct measurement of the area expansion and shear moduli of the human red blood cell membrane skeleton," Biophys. J. 81, 43-56 (2001). [CrossRef] [PubMed]
  46. S. Hénon, G. Lenormand, A. Richert, and F. Gallet, "A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers," Biophys. J. 76, 1145-1151 (1999). [CrossRef]
  47. E. A. Evans and N. Mohandas, "Membrane-associated sickle hemoglobin: a major determinant of sickle erythrocyte rigidity," Blood 70, 1443-1449 (1987). [PubMed]
  48. E. A. Evans, "A new membrane concept applied to the analysis of fluid shear- and micropipette-deformed red blood cells," Biophys. J. 13, 941-954 (1973). [CrossRef] [PubMed]
  49. D. J. Weatherall and J. B. Clegg, "Thalassemia revisited," Cell 29, 7-9 (1982). [CrossRef] [PubMed]
  50. G. Athanasiou, N. Zoubos, and Y. Missirlis, "Erytrhrocyte membrane deformability in patients with thalassemia syndromes," Nouv. Rev. Fr. Hematol. 33, 15-20 (1991). [PubMed]
  51. O. Inya-Agha, N. Klauke, T. Davies, G. Smith, and J. M. Cooper, "Spectroscopic Probing of Dynamic Changes during Stimulation and Cell Remodeling in the Single Cardiac Myocyte," Anal. Chem. 79, 4581-4587 (2007). [CrossRef] [PubMed]
  52. K. Mohanty, S. Mohanty, S. Monajembashi, and K. O. O Greulich, "Orientation of erythrocytes in optical trap revealed by confocal fluorescence microscopy," J. Biomed. Opt. 12, 0605061-0605063 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited