OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 11 — May. 26, 2008
  • pp: 7969–7975

Enhanced light trapping based on guided mode resonance effect for thin-film silicon solar cells with two filling-factor gratings

Yun-Chih Lee, Chian-Fu Huang, Jenq-Yang Chang, and Mount-Learn Wu  »View Author Affiliations

Optics Express, Vol. 16, Issue 11, pp. 7969-7975 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (261 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An approach of enhanced light-trapping in a thin-film silicon solar cell by adding a two-filling-factor asymmetric binary grating on it is proposed for the wavelength of near-infrared. Such a grating-on-thin-film structure forms a guided-mode resonance notch filter to couple energy diffracted from an incident wave to a leakage mode of the guided layer in the solar cell. The resonance wave coupled between two-filling-factor gratings would laterally extend the optical power and induce multiple bounces within the active layer. The resonance effect traps light in the cell enhancing its absorption probability. A dynamic light-trapping behaviour in solar cells is observed. A photon dwelling time is proposed for the first time to quantify the light-trapping effect. Moreover, the light absorption probability is also quantified. As compared the grating-on-thin-film structure with the one of planar silicon thin film, simulation results reveal that it is 3-fold enhancement in the light absorption within a spectral range of 920–1040 nm. Moreover, such an enhancement can be maintained even the incident angle of near-IR broadband light wave varies up to ±40°.

© 2008 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(260.5740) Physical optics : Resonance
(350.6050) Other areas of optics : Solar energy

ToC Category:
Diffraction and Gratings

Original Manuscript: January 28, 2008
Revised Manuscript: April 13, 2008
Manuscript Accepted: May 9, 2008
Published: May 19, 2008

Yun-Chih Lee, Chian-Fu Huang, Jenq-Yang Chang, and Mount-Learn Wu, "Enhanced light trapping based on guided mode resonance effect for thin-film silicon solar cells with two filling-factor gratings," Opt. Express 16, 7969-7975 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Luque and S. Hegedus, Handbook of Photovoltaic Science and Engineering (Wiley, England, 2003), Chap. 8. [CrossRef]
  2. L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, and L. Kimerling, "Efficiency enhancement in Si solar cells by textured photonic crystal back reflector," Appl. Phys. Lett. 89, 111111 (2006). [CrossRef]
  3. H. Stiebig, M. Schulte, C. Zahren, C. Haase, B. Rech, and P. Lechner, "Light trapping in thin-film silicon solar cells by nano-textured interfaces," Proc. SPIE 6197, 619701 (2006). [CrossRef]
  4. J. A. Anna Selvana, E. D. Alan, S. Guo, and Y.-M. Li, "A new light trapping TCO for nc-Si:H solar cells," Sol. Energy Mater. Sol. Cells 90, 3371-3376 (2006). [CrossRef]
  5. H. Sai, Y. Kanamori, K. Arafune, Y. Ohshita, and M. Yamaguchi, "Light trapping effect of submicron surface textures in crystalline Si solar cells" Prog. Photovoltaics 15, 415-423 (2007). [CrossRef]
  6. F. Llopis and I. Tobias, "Texture profile and aspect ratio influence on the front reflectance of solar cells," J. Appl. Phys. 100, 124504 (2006). [CrossRef]
  7. C. Heine and R. H. Morf, "Submicrometer gratings for solar energy applications," Appl. Opt. 34, 2476-2482 (1995). [CrossRef] [PubMed]
  8. C. Haase and H. Stiebig, "Fundamental optical simulations of light trapping in microcrystalline thin-film silicon solar cells," Proc. SPIE 6197, 619705 (2006). [CrossRef]
  9. F. Llopis and I. Tobias, "The role of rear surface in thin silicon solar cells" Sol. Energy Mater. Sol. Cells 87, 481-492 (2005). [CrossRef]
  10. D. O�??Brien, A. Gomez-Iglesias, M. D. Settle, A. Michaeli, M. Salib, and T. F. Krauss, "Tunable optical delay using photonic crystal heterostructure nanocavities," Phys. Rev. B 76, 115110 (2007). [CrossRef]
  11. C. Li, Z. Dutton, C. Behroozi, and L. Hau, "Observation of coherent optical information storage in an atomic medium using halted light pulses" Nature 409, 490-493 (2001). [CrossRef]
  12. M. Settle, R. Engelen, M. Salib, A. Michaeli, L. Kuipers, and T. Krauss, "Flatband slow light in photonic crystals featuring spatial pulse compression and terahertz bandwidth," Opt. Express 15, 219-226 (2007). [CrossRef] [PubMed]
  13. A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, "Coupled-resonator optical waveguide:a proposal and analysis," Opt. Lett. 24, 711-713 (1999). [CrossRef]
  14. Y. Ding and R. Magnusson, "Resonant leaky-mode spectral-band engineering and device applications," Opt. Express. 12, 5661-5674 (2004). [CrossRef] [PubMed]
  15. C. L. Hsu, M. L. Wu, Y. C. Liu, Y. C. Lee, and J. Y. Chang, "Flattened broad-band notch filters using guided-mode resonance associated with asymmetric binary gratings," IEEE Photon. Technol. Lett. 18, 2572-2574 (2006). [CrossRef]
  16. M. L. Wu, Y. C. Lee, C. L. Hsu, Y.-C. Liu, and J. Y. Chang, "Experimental and Theoretical demonstration of resonant leaky-mode in grating waveguide structure with a flattened passband," Jpn. J. Appl. Phys. 46, 5431-5434 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited