OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 11 — May. 26, 2008
  • pp: 8003–8015

Design of high-contrast OLEDs with microcavity effect

Daniel Poitras, Chien-Cheng Kuo, and Christophe Py  »View Author Affiliations

Optics Express, Vol. 16, Issue 11, pp. 8003-8015 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (388 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



There is a large demand for Organic Light-Emitting Displays (OLEDs) with higher contrast, particularly for outdoor applications. We show that lowering the reflectance of OLEDs, which is required for increasing the contrast, can also lead to a reduction of their efficiency when a small microcavity effect is not maintained in their structure. We describe in details the design of high-contrast bottom-emitting OLEDs that have low reflectance but still maintain a small cavity effect for efficient emission.

© 2008 Optical Society of America

OCIS Codes
(160.4890) Materials : Organic materials
(230.3670) Optical devices : Light-emitting diodes
(310.6845) Thin films : Thin film devices and applications

ToC Category:
Thin Films

Original Manuscript: February 26, 2008
Revised Manuscript: May 9, 2008
Manuscript Accepted: May 12, 2008
Published: May 19, 2008

Daniel Poitras, Chien-Cheng Kuo, and Christophe Py, "Design of high-contrast OLEDs with microcavity effect," Opt. Express 16, 8003-8015 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. Bahadur, "Display parameters and requirements," in Liquid Crystals: Applications and Uses, B. Bahadur, ed., (World Scientific, Singapore, 1991), p. 82.
  2. J. A. Dobrowolski, B. T. Sullivan, and R. C. Bajcar, "Optical interference, contrast-enhanced electroluminescent device," Appl. Opt. 31, 5988-5996 (1992). [CrossRef] [PubMed]
  3. J. Whitaker and B. K. Benson, Standard Handbook of Video and Television Engineering, (McGraw-Hill, 2003).
  4. K. R. Boff and J. E. Lincoln, eds., Engineering Data Compendium. Vol. 1. Human Perception and Performance, Harry G. Armstrong Aerospace Medical Research Laboratory, Wright-Patterson Air Force Base, Ohio, 1988.
  5. P. Anderson, Advance Display Technologies, JISC Technology & Standards Watch Report, August 2005; http://www.jisc.ac.uk/whatwedo/services/services_techwatch/techwatch/techwatch_reports_0503.aspx
  6. See for example G. Björk, "Modification of spontaneous emission rate in planar dielectric microcavity structures," Phys. Rev. A 44, 669-681 (1991). [CrossRef] [PubMed]
  7. S. D. Smith, "Design of multilayer filters by considering two effective interfaces," J. Opt. Soc. Am. 48, 43-50 (1958). [CrossRef]
  8. C. W. Tang and S. A. VanSlyke, "Organic electroluminescent diodes," Appl. Phys. Lett. 51, 913-915 (1987). [CrossRef]
  9. R. E. Slusher and C. Weisbuch, "Optical microcavities in condensed matter systems," Solid State Comm. 92, 149-158 (1994). [CrossRef]
  10. G. J. Lee, B. Y. Jung, C. K. Hwangbo, and J. S. Yoon, "Photoluminescence characteristics in metal-distributed feedback-mirror microcavity containing luminescent polymer and filler," Jpn. J. Appl. Phys. 41, 5241 (2002). [CrossRef]
  11. V. Bulovic, V. B. Khalfin, G. Gu, P. E. Burrows, D. Z. Garbuzov, and S. R. Forrest, "Weak microcavity effects in organic light-emitting devices," Phys. Rev. B. 58, 3730 (1998) [CrossRef]
  12. R. H. Jordan, L. J. Rothberg, A. Dodabalapur, and R. E. Slusher, "Efficiency-enhancement of microcavity organic light-emitting diodes," Appl. Phys. Lett. 69, (1996) [CrossRef]
  13. See for example US Patent 6549335 "High durability circular polarizer for use with emissive displays" (2003).
  14. A. M. Nuijs and J. J. L. Horikx, "Diffraction and scattering at antiglare structures for display devices," Appl. Opt. 33, 4058-4068 (1994). [CrossRef] [PubMed]
  15. O. Renault, O. V. Salata, M. Etchells, P. J. Dobson, and V. Christou, "A low reflectivity multilayer cathode for organic light-emitting diodes," Thin Solid Films 379, 195-198 (2000). [CrossRef]
  16. A. N. Krasnov, "High-contrast organic light-emitting diodes on flexible substrates," Appl. Phys. Lett. 80, 3853-3855 (2002). [CrossRef]
  17. H. Aziz, Y.-F. Liew, H. M. Grandin, and Z. D. Popovic, "Reduced reflectance cathode for organic light-emitting devices using metalorganic mixtures," Appl. Phys. Lett. 83, 186-188 (2003). [CrossRef]
  18. J. A. Dobrowolski, "Versatile computer program for absorbing optical thin film systems," Appl. Opt. 20, 74-81 (1981). [CrossRef] [PubMed]
  19. S. A. VanSlyke. C. H. Chen and C. W. Tang, "Organic electroluminescent devices with improved stability," Appl. Phys. Lett. 69, 2160-2162 (1996). [CrossRef]
  20. F. Lemarquis and G. Marchand, "Analytical achromatic design of metal-dielectric absorbers," Appl. Opt. 38, 4876-4884 (1999). [CrossRef]
  21. H. A. Macleod, "A new approach in the design of metal-dielectric thin-film optical coatings," Optica Acta 25, 93-106 (1978). [CrossRef]
  22. F. Goos, "Durchlässigkeit und reflexionsvermögen dünner silberschichten von ultrarot bis ultraviolet," Zeitschrift für Physik A Hadrons and Nuclei, 106, 606-619 (1937).
  23. H. A. Macleod, Thin-Film Optical Filters, Institute of Physics Publishing, 2001. [CrossRef]
  24. E. D. Palik, ed., Handbook of Optical Constants of Solids, Vols. I and II (Academic, New York, 1985).
  25. WVASE32 software (J. A. Woollam Co., Lincolrn, NE).
  26. D. Poitras, D. Dalacu, X. Liu, J. Lefebvre, P. J. Poole, and R. L. Williams, "Luminescent devices with symmetrical and asymmetrical microcavity structures," 46th Annual Tech. Conf. Proc. 317-322 (2003).
  27. D. Roth, C. Py, H. Fukutani, P. Marshall, M. Popela, and D. Leong, "An Organic Digital Integrated Multiplexing Clock Display," 10th Canadian Semiconductor Technology Conference, Ottawa, Canada, August 13-17, 2001.
  28. C. Py, D. Poitras, C.-C. Kuo, and H. Fukutani, "High-contrast organic light emitting diodes with a partially absorbing anode," Opt. Lett. 33, 1126-1128 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited