OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 11 — May. 26, 2008
  • pp: 8174–8180

Refractive index sensing utilizing a cw photonic crystal nanolaser and its array configuration

Shota Kita, Kengo Nozaki, and Toshihiko Baba  »View Author Affiliations


Optics Express, Vol. 16, Issue 11, pp. 8174-8180 (2008)
http://dx.doi.org/10.1364/OE.16.008174


View Full Text Article

Enhanced HTML    Acrobat PDF (2273 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate refractive index sensing using photonic crystal point shift nanolasers. These lasers operate continuously at room temperature by photopumping in a liquid, and exhibit a 50-dB peak intensity over the background level and a spectral linewidth of <26 pm, the resolution limit of the present experiment. The lasing wavelength shifts by soaking in different liquids; the wavelength to index sensitivity was 350 nm/RIU, the highest value recorded to date for nanocavity- based sensors. An index resolution of 9.0×10-5 was thus confirmed, leading to an expectation of a resolution of <10-6. We propose and demonstrate a spectrometer-free sensor based on nanolasers in an array configuration. These will be disposable sensors with very simple optical I/O. They are anticipated to be integrated with biochips and used for label-free single molecule detection.

© 2008 Optical Society of America

OCIS Codes
(140.5960) Lasers and laser optics : Semiconductor lasers
(230.5298) Optical devices : Photonic crystals

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: April 4, 2008
Revised Manuscript: May 10, 2008
Manuscript Accepted: May 11, 2008
Published: May 20, 2008

Virtual Issues
Vol. 3, Iss. 6 Virtual Journal for Biomedical Optics

Citation
Shota Kita, Kengo Nozaki, and Toshihiko Baba, "Refractive index sensing utilizing a cw photonic crystal nanolaser and its array configuration," Opt. Express 16, 8174-8180 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-11-8174


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Psaltis, S. R. Quake, and C. Yang "Developing optofluidic technology through the fusion of microfluidics and optics," Nature 442, 381 - 386 (2006). [CrossRef]
  2. C. Monat, P. Domachuk and B. J. Eggleton, "Integrated optofluidics: a new river of light," Nat. Photonics 1, 106-114 (2007). [CrossRef]
  3. F. Follmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, "Protein detection by optical shift of a resonant microcavity," Appl. Phys. Lett. 80, 4057-4059 (2002). [CrossRef]
  4. I. M. White, H. Zhu, J. Suter, N. M. Hanumegowda, H. Oveys, M. Zourob, and X. Fan, "Refractometric sensors for lab-on-a-chip based on optical ring resonators," IEEE Sens. J. 7, 28-35 (2007). [CrossRef]
  5. A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, "Label-free, single-molecule detection with optical microcavities," Science (2007).
  6. A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, "High sensitivity evanescent field fiber Bragg grating sensor," IEEE Photon. Technol. Lett. 17, 1253-1255 (2005). [CrossRef]
  7. E. Chow, A. Grot, L. W. Mirkarimi, M. Sigalas, and G. Girolami, "Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity," Opt. Lett. 29, 1093 (2004) [CrossRef] [PubMed]
  8. Y. Nishijima, K. Ueno, S. Juodkazis, V. Mizeikis, H. Misawa, T. Tanimura, and K. Maeda, "Inverse silica opal photonic crystals for optical sensing applications," Opt. Express 15, 12979-12987 (2007). [CrossRef] [PubMed]
  9. M. R. Lee and PhilippeM. Fauchet, "Two-dimensional silicon photonic crystal based biosensing platform for protein detection," Opt. Express 15, 4530-4535 (2007). [CrossRef] [PubMed]
  10. M. R. Lee and P. M. Fauchet, "Nanoscale microcavity sensor for single particle detection," Opt. Lett. 32, 3284-3286 (2007). [CrossRef] [PubMed]
  11. M. Loncar, A. Scherer, and Y. Qiu, "Photonic crystal laser sources for chemical detection," Appl. Phys. Lett. 82, 4648-4650 (2003). [CrossRef]
  12. M. L. Adams, G. A. DeRose, M. Loncar and A. Scherer, "Lithographically fabricated optical cavities for refractive index sensing," J. Vac. Sci. Technol. B 23, 3168-3173 (2005). [CrossRef]
  13. M. L. Adams, M. Loncar, A. Scherer, and Y. Qiu, "Microfluidic integration of porous photonic crystals nanolasers for chemical sensing," IEEE J. Sel. Areas Commun. 23, 1348 -1354 (2005). [CrossRef]
  14. H. Watanabe, K. Nozaki, and T. Baba, "Very Wide Wavelength Chirping in Photonic Crystal Nanolaser," The 34th International Symposium on Compound Semiconductors, ThC P10 (2007).
  15. K. Nozaki, S. Kita, and T. Baba, "Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser," Opt. Express 15, 7506-7514 (2007). [CrossRef] [PubMed]
  16. K. Nozaki and T. Baba, "Laser characteristics with ultimate-small modal volume in photonic crystal slab point-shift nanolasers," Appl. Phys. Lett. 88, 21101 (2006). [CrossRef]
  17. F. M. De Sopra, H. P. Zappe, M. Moser, R. Hovel, H. P. Gauggel, and K. Gulden, "Near-infrared vertical-cavity surface-emitting lasers with 3-MHzlinewidth," IEEE Photon. Technol. Lett. 11, 1533 - 1535 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited