OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 11 — May. 26, 2008
  • pp: 8229–8235

Birefringence switching of Bragg gratings in fibers with internal electrodes

Zhangwei Yu, O. Tarasenko, W. Margulis, and P. -Y. Fonjallaz  »View Author Affiliations

Optics Express, Vol. 16, Issue 11, pp. 8229-8235 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (216 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A fiber Bragg grating was written in a side-hole fiber with internal metal alloy electrodes. The initial geometrical birefringence of this fiber gives rise to two Bragg resonances separated by 43 pm. Nanosecond risetime current pulses of up to 23 A were applied to the metal electrode, which heated and expanded rapidly. This caused mechanical stress in the fiber on a nanosecond scale, resulting in a negative shift of the Bragg wavelength peak for the fast axis mode, and positive but smaller shift for the slow axis mode. The fast change increased the peak separation to ~143 pm, corresponding to an increase in birefringence from 4.0×10-5 to 1.3×10-4. Both peaks subsequently experienced a red-shift due to the relaxation of mechanical stress and the increasing core temperature transferred from the metal in many microseconds. Simulations give accurate description of the experimental results.

© 2008 Optical Society of America

OCIS Codes
(060.3735) Fiber optics and optical communications : Fiber Bragg gratings
(060.4005) Fiber optics and optical communications : Microstructured fibers

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: March 18, 2008
Revised Manuscript: May 19, 2008
Manuscript Accepted: May 19, 2008
Published: May 21, 2008

Zhangwei Yu, O. Tarasenko, W. Margulis, and P.-Y. Fonjallaz, "Birefringence switching of Bragg gratings in fibers with internal electrodes," Opt. Express 16, 8229-8235 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. M. Xie, Ph. Dabkiewicz, R. Ulrich, and K. Okamoto, "Side-hole fiber for fiber-optic pressure sensing," Opt. Lett. 11, 333-335 (1986). [CrossRef] [PubMed]
  2. M. Turpin, M. Brevignon, J. P. Le. Pesant, and O. Gaouditz, "Interfero-polarimetric fiber optic sensor for both pressure and temperature measurement," in Proceedings of IEEE Conference on Optical Fiber Sensors (Institute of Electrical and Electronic Engineers, New York, 1992), pp. 362-365.
  3. W. J. Bock, M. S. Nawrocka, and W. Urban´ czyk, "Highly sensitive fiber-optic sensor for dynamic pressure measurements," IEEE Trans. Instrum. Meas. 50, 1085-1088 (2001). [CrossRef]
  4. S. Kreger, S. Calvert, and E. Udd, "High pressure sensing using fiber Bragg grating written in birefringent side hole fiber," in Proceedings of IEEE Conference on Optical Fiber Sensors, (Portland, 2002), pp. 355-358.
  5. R. J. Schroeder, T. Yamate, and E. Udd, "High pressure and temperature sensing for the oil industry using fiber Bragg gratings written onto side hole single mode fiber," Proc. SPIE 3746, 72-74 (1999).
  6. T. Yamate, R. T. Ramos, R. J. Schroeder, and E. Udd, "Thermally insensitive pressure measurements up to 300 degrees C using fiber Bragg gratings written onto side-hole single mode fiber," Proc. SPIE 4185, 628-631 (2000).
  7. E. Chmielewska, W. Urbanczyk, and W. J. Bock, "Measurement of pressure and temperature sensitivities of a Bragg grating imprinted in a highly birefrigent side-hole fiber," Appl. Opt. 42, 6284-6291 (2003). [CrossRef] [PubMed]
  8. C. Jewart, K. P. Chen, B. McMillen, M. M. Bails, S. P. Levitan, J. Canning, and I. V. Avdeev, "Sensitivity enhancement of fiber Bragg gratings to transverse stress by using microsturctural fibers," Opt. Lett. 31, 2260-2262 (2006). [CrossRef] [PubMed]
  9. L. -E. Nilsson, Z. Yu, O. Tarasenko, H. Knape, P. -Y. Fonjallaz, and W. Margulis, "High-speed switching in fibres with electrodes," in Proceedings of IEEE Conference on Transparent Optical Networks (Rome, 2007), pp. 232-233.
  10. Z. Yu, W. Margulis, O. Tarasenko, H. Knape, and P.-Y. Fonjallaz, "High-speed control of fiber Bragg gratings," in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, OSA Technical Digest (CD) (Optical Society of America, 2007), paper JWA44.
  11. Z. Yu, W. Margulis, O. Tarasenko, H. Knape, and P. -Y. Fonjallaz, "Nanosecond switching of fiber Bragg gratings," Opt. Express 15, 14948-14953 (2007). [CrossRef] [PubMed]
  12. Z. Yu, W. Margulis, P.-Y. Fonjallaz, and O. Tarasenko, "Physics of electrically switched fiber Bragg gratings," in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper CMK1.
  13. M. Fokine, L. E. Nilsson, ?. Claesson, D. Berlemont, L. Kjellberg, L. Krummenacher, and W. Margulis, "Integrated fiber Mach-Zehnder interferometer for electro-optic switching," Opt. Lett. 27, 1643-1645 (2002). [CrossRef]
  14. J. A. Viator, S. Kreger, M. W. Winz, and E. Udd, "Modeling and experimental strain measurements on a non-homogeneous cylinder under transverse load," Proc. SPIE 5384, 199-205 (2004). [CrossRef]
  15. R. Gafsi and M. A. El-Sherif, "Analysis of Induced-Birefringence Effects on Fiber Bragg Gratings," Opt. Fiber Technol. 6, 299-323 (2000). [CrossRef]
  16. N. F Borrelli and R. A. Miller, "Determination of the individual strain-optic coefficients of glass by an ultrasonic technique," Appl. Opt. 7, 745-750 (1968). [CrossRef] [PubMed]
  17. H. Knape and W. Margulis, "All-fiber polarization switch," Opt. Lett. 32, 614-616 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited