OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 11 — May. 26, 2008
  • pp: 8269–8279

Static gain saturation in quantum dot semiconductor optical amplifiers

Christian Meuer, Jungho Kim, Matthias Laemmlin, Sven Liebich, Amir Capua, Gadi Eisenstein, Alexey R. Kovsh, Sergey S. Mikhrin, Igor L. Krestnikov, and Dieter Bimberg  »View Author Affiliations

Optics Express, Vol. 16, Issue 11, pp. 8269-8279 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (1110 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Measurements of saturated amplified spontaneous emission-spectra of quantum dot semiconductor optical amplifiers demonstrate efficient replenishment of the quantum-dot ground state population from excited states. This saturation behavior is perfectly modeled by a rate equation model. We examined experimentally the dependence of saturation on the drive current and the saturating optical pump power as well as on the pump wavelength. A coherent noise spectral hole is observed with which we assess dynamical properties and propose optimization of the SOA operating parameters for high speed applications.

© 2008 Optical Society of America

OCIS Codes
(190.4720) Nonlinear optics : Optical nonlinearities of condensed matter
(250.5980) Optoelectronics : Semiconductor optical amplifiers
(250.5590) Optoelectronics : Quantum-well, -wire and -dot devices

ToC Category:

Original Manuscript: March 13, 2008
Revised Manuscript: May 15, 2008
Manuscript Accepted: May 19, 2008
Published: May 22, 2008

Christian Meuer, Jungho Kim, Matthias Laemmlin, Sven Liebich, Amir Capua, Gadi Eisenstein, Alexey R. Kovsh, Sergey S. Mikhrin, Igor L. Krestnikov, and Dieter Bimberg, "Static gain saturation in quantum dot semiconductor optical amplifiers," Opt. Express 16, 8269-8279 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. A. Fields, M. Birnbaum, and C. L. Fincher, "Highly efficient Nd:YVO4 diode-laser end-pumped laser," Appl. Phys. Lett. 51, 1885-1886 (1987). [CrossRef]
  2. A. Sennaroglu, "Efficient continuous-wave operation of a diode-pumped Nd:YVO4 laser at 1342 nm," Opt. Commun. 164, 191-197 (1999). [CrossRef]
  3. Y. F. Chen, "Design criteria for concentration optimization in scaling diode end-pumped lasers to high powers: influence of thermal fracture," IEEE J. Quantum Electron. 35, 234-239 (1999). [CrossRef]
  4. A. Y. Yao, W. Hou, Y. P. Kong, L. Guo, L. A. Wu, R. N. Li, D. F. Cui, Z. Y. Xu, Y. Bi, and Y. Zhou, " Double-end-pumped 11-W Nd:YVO4 cw laser at 1342 nm," J. Opt. Soc. Am. B 22, 2129-2133 (2005). [CrossRef]
  5. T. Jensen, V. G. Ostroumov, J. P. Meyn, G. Huber, A. I. Zagumennyi, and I. A. Shcherbarkov, "Spectroscopic characterization and laser performance of diode-laser-pumped Nd:GdVO4," Appl. Phys. B 58, 373-379 (1994). [CrossRef]
  6. H. J. Zhang, X. L. Meng, L. Zhu, H. Z. Zhang, P. Wang, J. Dawes, C. Q. Wang, and Y. T. Chow, "Investigation on the growth and laser properties of Nd:GdVO4 single crystal," Cryst. Res. Technol. 33, 801-806 (1998). [CrossRef]
  7. T. Ogawa, Y. Urata, S. Wada, K. Onodera, H. Machida, H. Sagae, M. Higuchi, and K. Kodaira, "Efficient laser performance of Nd:GdVO4 crystals grown by the floating zone method," Opt. Lett. 28, 2333-2335 (2003). [CrossRef]
  8. V. Lupei, N. Pavel, Y. Sato, and T. Taira, "Highly efficient 1063-nm continuous-wave laser emission in Nd:GdVO4," Opt. Lett. 28, 2366-2368 (2003). [CrossRef]
  9. L. J. Qin, X. L. Meng, L. Zhu, J. H. Liu, B. C. Xu, H. Z. Xu, F. Y. Jiang, C. L. Du, X. Q. Wang, and Z. S. Shao, "Influence of the different Gd/Y ratio on the properties of Nd:YxGd1-xVO4 mixed crystals," Chem. Phys. Lett. 380, 273-278 (2003). [CrossRef]
  10. J. Liu, X. Meng, Z. Shao, M. Jiang, B. Ozygus, A. Ding, and H. Weber, "Pulse energy enhancement in passive Q-switching operation with a class of Nd:GdxY1-xVO4 crystals," Appl. Phys. Lett. 83, 1289-1291 (2003). [CrossRef]
  11. Y. F. Chen, M. L. Ku, L. Y. Tsai, and Y. C. Chen, "Diode-pumped passively Q-switched picosecond Nd:GdxY1-xVO4 self-stimulated Raman laser," Opt. Lett. 29, 2279-2281 (2004). [CrossRef]
  12. J. L He, Y. X. Fan, J. Du, Y. G. Wang, S. Liu, H. T. Wang, L. H. Zhang, and Y. Hang, "4-ps passively mode-locked Nd:Gd0.5Y0.5VO4 laser with a semiconductor saturable-absorber mirror," Opt. Lett. 29, 2803-2805 (2004). [CrossRef]
  13. S. P. Ng, D. Y. Tang, A. Q. Liu, L. J. Qin, and X. L. Meng, "Short pulse passively Q-switched NdGdYVO4 laser using a GaAs mirror, " Opt. Commun. 259, 256-260 (2006). [CrossRef]
  14. H. H. Yu, H. J. Zhang, Z. P. Wang, J. Y. Wang, Y. G. Yu, Z. S. Shao, M. H. Jiang, and X. Y. Zhang, "Continuous wave and passively Q-switched laser performance of Nd-doped mixed crystal Nd:Lu0.5Gd0.5VO4," Appl. Phys. Lett. 90, 231110 (2007). [CrossRef]
  15. A. A. Kaminskii, "Modern developments in the physics of crystalline laser materials," Phys. Status Solidi (A) 200, 215-296 (2003). [CrossRef]
  16. T. T. Basiev and R. C. Powell, "Special issue on solid state Raman lasers-Introduction," Opt. Mater. 11, 301-306 (1999). [CrossRef]
  17. H. M. Pask, "The design and operation of solid-state Raman lasers," Prog. Quantum Electron. 27, 3-56 (2003). [CrossRef]
  18. Y. F. Chen, "Stimulated Raman scattering in a potassium titanyl phosphate crystal: simultaneous self-sum frequency mixing and self-frequency doubling," Opt. Lett. 30, 400-402 (2005). [CrossRef]
  19. S. Pearce, C. L. M. Ireland, and P. E. Dyer, "Solid-state Raman laser generating <1ns, multi-kilohertz pulses at 1096 nm," Opt. Commun. 260, 680-686 (2006). [CrossRef]
  20. V. Pasiskevicius, C. Canalias, and F. Laurell, "Highly efficient stimulated Raman scattering of picosecond pulses in KTiOPO4," Appl. Phys. Lett. 88, 041110 (2006). [CrossRef]
  21. G. A. Massey, T. M. Loehr, L. J. Willis, and J. C. Johnson, ""Raman and Electro-optic Properties of Potassium Titanate Phosphate," Appl. Opt. 19, 4136-4137 (1980).
  22. K. Kawase, M. Mizuno, S. Sohma, H. Takahashi, T. Taniuchi, Y. Urata, S. Wada, H. Tashiro, and H. Ito, "Difference-frequency terahertz-wave generation from 4-dimethylamino-N-methyl-4-stilbazolium-tosylate by use of an electronically tuned Ti:sapphire laser," Opt. Lett. 24, 1065-1067 (1999). [CrossRef]
  23. K. Kawase, T. Hatanaka, H. Takahashi, K. Nakamura, T. Taniuchi, and H. Ito, "Tunable terahertz-wave generation from DAST crystal by dual signal-wave parametric oscillation of periodically poled lithium niobate," Opt. Lett. 25, 1714-1716 (2000). [CrossRef]
  24. K. Suizu, K. Miyamoto, T. Yamashita, and H. Ito, "High-power terahertz-wave generation using DAST crystal and detection using mid-infrared powermeter," Opt. Lett. 32, 2885-2887 (2007). [CrossRef]
  25. J. J. Zayhowski and A. Mooradian, "Single-frequency microchip Nd lasers," Opt. Lett. 14, 24-26 (1989). [CrossRef]
  26. G. J. Dixon, L. S. Lingvay, and R. H. Jarman, "Properties of close coupled monolithic, lithium neodymium, tetraphosphate lasers," Proc. SPIE 1104, 107 (1989). [CrossRef]
  27. Y. F. Chen, T. M. Huang, C. F. Kao, C. L. Wang, and S. C. Huang, "Optimization in scaling fiber-coupled laser-diode end-pumped lasers to higher power: influence of thermal effect," IEEE J. Quantum Electron. 33, 1424-1429 (1997). [CrossRef]
  28. Y. F. Chen, "High-power diode-pumped Q-switched intracavity frequency-doubled Nd:YVO4 laser with a sandwich-type resonator," Opt. Lett. 24, 1032-1034 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited