OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 12 — Jun. 9, 2008
  • pp: 8342–8349

Mode competitions and dynamical frequency pulling in Mie nanolasers: 3D ab-initio Maxwell-Bloch computations

A. Fratalocchi, C. Conti, and G. Ruocco  »View Author Affiliations


Optics Express, Vol. 16, Issue 12, pp. 8342-8349 (2008)
http://dx.doi.org/10.1364/OE.16.008342


View Full Text Article

Enhanced HTML    Acrobat PDF (618 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate the process of light matter interaction in a spherical Mie nanolaser. We derive a rigorous theory based on a three dimensional vector set of Maxwell-Bloch equations and solve the resulting equations through a parallel Finite-Difference Time-Domain Maxwell-Bloch (FDTD-MB) code. Our results predicts a rich physical scenario, ranging from nontrivial vectorial energy matter interplay in the pre-lasing regime to mode competitions and dynamical frequency pulling phenomena. Application of these effects could favor the realization of largely-tunable, nonlinearly controlled nanolaser devices.

© 2008 Optical Society of America

OCIS Codes
(140.0140) Lasers and laser optics : Lasers and laser optics
(190.7110) Nonlinear optics : Ultrafast nonlinear optics
(020.2649) Atomic and molecular physics : Strong field laser physics

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: February 1, 2008
Manuscript Accepted: March 31, 2008
Published: May 23, 2008

Citation
A. Fratalocchi, C. Conti, and G. Ruocco, "Mode competitions and dynamical frequency pulling in Mie nanolasers: 3D ab-initio Maxwell-Bloch computations," Opt. Express 16, 8342-8349 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-12-8342


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Mie, "Beitrge zur Optik trber Medien, speziell kolloidaler Metallsungen," Ann. Phys. 330, 377-445 (1908). [CrossRef]
  2. H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981).
  3. M. Xu and R. R. Alfano, "Random Walk of Polarized Light in Turbid Media," Phys. Rev. Lett. 95, 213901-(4) (2005). [CrossRef] [PubMed]
  4. Y. Yamamoto, F. Tassone, and H. Cao, Semiconductor Cavity Quantum Electrodynamics (Springer, Berlin, 2000).
  5. H. Yukawa, S. Arnold, and K. Miyano, "Microcavity effect of dyes adsorbed on a levitated droplet," Phys. Rev. A 60, 2491-2496 (1999). [CrossRef]
  6. P. W. Barber and K. Chang, Optical Effects Associated with Small Particles (World Scientific, Singapore, 1988).
  7. M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, New York, 1969).
  8. P. J. Wyatt, "Scattering of Electromagnetic Plane Waves from Inhomogeneous Spherically Symmetric Objects," Phys. Rev. 127, 1837-1843 (1962). [CrossRef]
  9. A. Ashkin and J. M. Dziedzic, "Observation of Resonances in the Radiation Pressure on Dielectric Spheres," Phys. Rev. Lett. 38, 1351-1354 (1977). [CrossRef]
  10. L. Yang and K. J. Vahala, "Gain functionalization of silica microresonators," Opt. Lett. 28, 592-(3) (2003). [CrossRef] [PubMed]
  11. Y. Yamamoto and R. E. Slusher, "Optical processes in microcavities," Phys. Today 46, 66-73 (1993). [CrossRef]
  12. U. Vietze, O. Krau, F. Laeri, G. Ihlein, F. Schth, B. Limburg, and M. Abraham, "Zeolite-Dye Microlasers," Phys. Rev. Lett. 81, 4628-(4) (1998). [CrossRef]
  13. S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, "Ultralow-threshold Raman laser using a spherical dielectric microcavity," Nature 415, 621-(3) (2002). [CrossRef] [PubMed]
  14. V. Sandoghdar, F. Treussart, J. Hare, V. Lefvre-Seguin, and J. -M. Raimond, "Very low threshold whisperinggallery- mode microsphere laser," Phys. Rev. A 54, R1777-(4) (1996). [CrossRef] [PubMed]
  15. E. T. Jaynes and F. W. Cummings, "Comparison of Quantum and Semiclassical Radiation Theory with Application to the Beam Maser," Proc. IEEE. 51, 89-109 (1963). [CrossRef]
  16. G. W. Gardiner and P. Zoller, Quantum noise (Springer, Berlin, 2000).
  17. W. E. Lamb, "Theory of an Optical Maser," Phys. Rev. 134, A1429-A1450 (1964). [CrossRef]
  18. A. E. Siegman, Lasers (University Science Books, Sausalito, 1986).
  19. G. Slavcheva, J. Arnold, and R. Ziolkowski, "FDTD simulation of the nonlinear gain dynamics in active optical waveguides and semiconductor microcavities," IEEE J. Sel. Top. Quantum Electron. 10, 1052-1062 (2004). [CrossRef]
  20. G. Slavcheva, J. M. Arnold, I. Wallace, and R. W. Ziolkowski, "Coupled Maxwell-pseudospin equations for investigation of self-induced transparency effects in a degenerate three-level quantum system in two dimensions: Finite-difference time-domain study," Phys. Rev. A 66, 063418-(21) (2002). [CrossRef]
  21. B. Bid???egaray-Fesquet, F. Castella, and P. Degond, "From Bloch model to the rate equations," Disc. Cont. Dyn. Sys. 11, 1-26 (2004). [CrossRef]
  22. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge Press, New York, 1995).
  23. S. L. McCall and E. L. Hahn, "Self-Induced Transparency," Phys. Rev. 183, 457-485 (1969). [CrossRef]
  24. E. Ott, Chaos in Dynamical Systems (Cambridge University Press, Cambridge, 1997).
  25. K. Li, M. I. Stockman, and D. J. Bergman, "Self-Similar Chain of Metal Nanospheres as an Efficient Nanolens," Phys. Rev. Lett. 91, 227402-(4) (2003). [CrossRef] [PubMed]
  26. C. Conti, L. Angelani, and G. Ruocco, "Light diffusion and localization in three-dimensional nonlinear disordered media," Phys. Rev. A 75, 033812-(5) (2007). [CrossRef]
  27. L. Rojas-Ochas, J. Mendez-Alcaraz, P. S. J.J. Saenz, and F. Scheffold, "Photonic Properties of Strongly Correlated Colloidal Liquids," Phys.Rev.Lett. 93, 073903-(4) (2004). [CrossRef]
  28. F. T. Hioe and J. H. Eberly, "N-Level Coherence Vector and Higher Conservation Laws in Quantum Optics and Quantum Mechanics," Phys. Rev. Lett. 47, 838-(4) (1981). [CrossRef]
  29. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Boston, 2005).
  30. Y. Y. Lee and C. T. Chen-Tsay, "The fifteenfold way of the SU(4) symmetry scheme of strongly interacting particles," Chinese Journal of Physics 3, 45-68 (1965).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited