OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 12 — Jun. 9, 2008
  • pp: 8381–8394

Optical crosstalk in single photon avalanche diode arrays: a new complete model

Ivan Rech, Antonino Ingargiola, Roberto Spinelli, Ivan Labanca, Stefano Marangoni, Massimo Ghioni, and Sergio Cova  »View Author Affiliations

Optics Express, Vol. 16, Issue 12, pp. 8381-8394 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (2231 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



One of the main issues of Single Photon Avalanche Diode arrays is optical crosstalk. Since its intensity increases with reducing the distance between devices, this phenomenon limits the density of integration within arrays. In the past optical crosstalk was ascribed essentially to the light propagating from one detector to another through direct optical paths. Accordingly, reflecting trenches between devices were proposed to prevent it, but they proved to be not completely effective. In this paper we will present experimental evidence that a significant contribution to optical crosstalk comes from light reflected internally off the bottom of the chip, thus being impossible to eliminate it completely by means of trenches. We will also propose an optical model to predict the dependence of crosstalk on the distance between devices.

© 2008 Optical Society of America

OCIS Codes
(040.1240) Detectors : Arrays
(040.6070) Detectors : Solid state detectors
(230.5160) Optical devices : Photodetectors

ToC Category:

Original Manuscript: March 11, 2008
Revised Manuscript: April 15, 2008
Manuscript Accepted: April 20, 2008
Published: May 23, 2008

Ivan Rech, Antonino Ingargiola, Roberto Spinelli, Ivan Labanca, Stefano Marangoni, Massimo Ghioni, and Sergio Cova, "Optical crosstalk in single photon avalanche diode arrays: a new complete model," Opt. Express 16, 8381-8394 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Yang, G. Luo, P. Karnchanaphanurach, T. M. Louie, I. Rech, S. Cova, L. Xun, and X. S. Xie, "Protein Conformational Dynamics Probed by Single-Molecule Electron Transfer," Science 302, 262-266 (2003). [CrossRef] [PubMed]
  2. F. Stellari, A. Tosi, F. Zappa, and S. Cova, "CMOS circuit testing via time-resolved luminescence measurements and simulations," IEEE Trans. Instrum. Meas. 53, 163-169 (2004). [CrossRef]
  3. F. Zappa, S. Tisa, S. Cova, P. Maccagnani, D. B. Calia, R. Saletti, R. Roncella, G. Bonanno, and M. Belluso, "Single-photon avalanche diode arrays for fast transients and adaptive optics," IEEE Trans. Instrum. Meas. 55, 365-374 (2006). [CrossRef]
  4. K. J. Gordon, V. Fernandez, P. D. Townsend, and G. S. Buller, "A short wavelength GigaHertz clocked fiber-optic quantum key distribution system," IEEE J. Quantum Electron. 40, 900-908 (2004). [CrossRef]
  5. A. L. Lacaita, F. Zappa, S. Bigliardi, and M. Manfredi, "On the bremsstrahlung origin of hot-carrier-induced photons in silicon devices," IEEE Trans. Electron. Devices 40, 577-582 (1993). [CrossRef]
  6. R. H. Haitz, "Studies on optical coupling between silicon p-n junctions," Solid-State Electronics 8, 417-425 (1965). [CrossRef]
  7. I. Prochazka, K. Hamal, L. Kral, and J. Blazej, "Silicon photon counting detector optical cross-talk effect," Paper presented at Photonics, Devices, and Systems III.
  8. W. J. Kindt, H. W. van Zeijl, and S. Middelhoek, "Optical Cross Talk in Geiger Mode Avalanche Photodiode Arrays: Modeling, Prevention and Measurement," Paper presented at Proc. of the 28th European Solid-State Device Research Conference.
  9. S. Cova, M. Ghioni, A. L. Lacaita, C. Samori, and F. Zappa, "Avalanche photodiodes and quenching circuits for single-photon detection," Appl. Opt. 35, 1956-1976 (1996). [CrossRef] [PubMed]
  10. A. L. Lacaita, M. Ghioni, and S. Cova, "Double epitaxy improves single-photon avalanche diode performance," Electron. Lett. 25, 841-843 (1989). [CrossRef]
  11. J. Bude, "Hot-carrier luminescence in Si," Phys. Rev. B 45, 5848-5856 (1992). [CrossRef]
  12. A. Restelli, I. Rech, P. Maccagnani, M. Ghioni, and S. Cova, "Monolithic silicon matrix detector with 50 ?m photon counting pixels," J. Mod. Opt. 54, 213-224 (2006). [CrossRef]
  13. Properties of Silicon, no. 4 in Emis datareviews series (New York: Inspec, c1988, London, 1988).
  14. W. Spitzer and H. Y. Fan, "Infrared Absorption in n-Type Silicon," Phys. Rev. 108, 268-271 (1957). [CrossRef]
  15. P. E. Schmid, "Optical absorption in heavily doped silicon," Phys. Rev. B 23, 5531-5536 (1981). [CrossRef]
  16. D. K. Schroeder, R. N. Thomas, and J. C. Swartz, "Free Carrier Absorption in Silicon," IEEE J. Solid-State Circuits 13, 180-187 (1978). [CrossRef]
  17. A. G. Chynoweth and K. G. McKay, "Photon Emission from Avalanche Breakdown in Silicon," Phys. Rev. 102, 369-376 (1956). [CrossRef]
  18. W. Haecker, "Infrared Radiation from Breakdown Plasmas in Si, GaSb, and Ge: Evidence for Direct Free Hole Radiation," Phys. Status Solidi 25, 301-310 (1974). [CrossRef]
  19. N. Akil, S. E. Kerns, D. V., Jr., A. Hoffmann, and J. Charles, "A multimechanism model for photon generation by silicon junctions in avalanche breakdown," IEEE Trans. Electron. Devices 46, 1022-1028 (1999). [CrossRef]
  20. G. Lubberts and B. C. Burkey, "Optical and electrical properties of heavily phosphorus-doped epitaxial silicon layers," J. Appl. Phys. 55, 760-763 (1984). [CrossRef]
  21. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, Cambridge, 1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited