OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 12 — Jun. 9, 2008
  • pp: 8395–8405

Error-free continuously-tunable delay at 10 Gbit/s in a reconfigurable on-chip delay-line

Francesco Morichetti, Andrea Melloni, Carlo Ferrari, and Mario Martinelli  »View Author Affiliations


Optics Express, Vol. 16, Issue 12, pp. 8395-8405 (2008)
http://dx.doi.org/10.1364/OE.16.008395


View Full Text Article

Acrobat PDF (654 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A coupled-resonator optical waveguide (CROW) consisting of a chain of directly coupled ring-resonators (RRs) fabricated in 4.5%-indexcontrast silicon oxynitride technology is employed to control the delay of optical pulses with continuity and over several bit-slots. The moderate deterioration of the signal quality versus the delay is demonstrated by the observation of error-free transmission (BER < 10-9) at 10 Gbit/s for fractional delays of up to 3 bits, with fractional losses below 1 dB per bit-delay. The high storage efficiency of the device, exceeding 0.5 bit/RR, enables an easy management of the delay and the reduction of the footprint down to 7 mm2. The presented reconfiguration scheme is hitless with respect to data transmission, since the CROW delay can be tuned without halting the data flow, while preserving the signal quality.

© 2008 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(200.4490) Optics in computing : Optical buffers
(230.4555) Optical devices : Coupled resonators

ToC Category:
Integrated Optics

History
Original Manuscript: March 18, 2008
Revised Manuscript: April 28, 2008
Manuscript Accepted: April 29, 2008
Published: May 23, 2008

Citation
Francesco Morichetti, Andrea Melloni, Carlo Ferrari, and Mario Martinelli, "Error-free continuously-tunable delay at 10 Gbit/s in a reconfigurable on-chip delay-line," Opt. Express 16, 8395-8405 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-12-8395


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. D. Gauthier, "Slow light brings faster communications," Phys. World, 30December (2005).
  2. J. T. Mok and B. J. Eggleton, "Expect more delays," Nature (London) 433, 811-812 (2005). [CrossRef]
  3. E. Parra and J. R. Lowell, "Toward applications of slow-light technology," Opt. Photon. News 18, 41-45 (2007). [CrossRef]
  4. R. M. Camacho, M. V. Pack, J. C. Howell, A. Schweinsberg, and R. W. Boyd, "Wide-bandwidth, tunable, multiple-pulse-width optical delays using slow light in cesium vapour," Phys. Rev. Lett. 98,153601 (2007). [CrossRef]
  5. Y. Okawachi, M. S. Bigelow, J. E Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, "Tunable all-optical delays via Brillouin slow light in an optical fiber," Phys. Rev. Lett. 94, 153902 (2005). [CrossRef]
  6. K. Y. Song, M. G. Herrez, and L. Thevenaz, "Long optically controlled delays in optical fibers," Opt. Lett. 30, 1782-1784 (2005). [CrossRef]
  7. J. Sharping, Y. Okawachi, and A. Gaeta, "Wide bandwidth slow light using a Raman fiber amplifier," Opt. Lett. 13, 6092-6098 (2005).
  8. B. Zhang, L. -S. Yan, J. -Y. Yang, I. Fazal, and A. E. Willner, "A single slow-light element for independent delay control and synchronization on multiple Gb/s data channels," IEEE Photon. Technol. Lett. 19, 1081 - 1083 (2007). [CrossRef]
  9. B. Zhang, L. Zhang, L. -S. Yan, I. Fazal, J. -Y. Yang, and A. E. Willner,"Continuously-tunable, bit-rate variable OTDM using broadband SBS slow-light delay line," Opt. Express 15, 8317-8322 (2007). [CrossRef]
  10. F. Xia, L. Sekaric, and Y. Vlasov, "Ultracompact optical buffers on a silicon chip," Nat. Photonics 1, 65-71 (2007). [CrossRef]
  11. M. Ghulinyan, M. Galli, C. Toninelli, J. Bertolotti, S. Gottardo, F. Marabelli, D. Wiersma, L. Pavesi, and L. Andreani, "Wide-band transmission of non-distorted slow waves in one-dimensional optical superlattices," Appl. Phys. Lett. 88, 241103 (2006). [CrossRef]
  12. Y. Akahane, T. Asano, B. S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature (London) 425, 944-947 (2003). [CrossRef]
  13. D. O???Brien, M. D. Settle, T. Karle, A. Michaeli, M. Salib, and T. F. Krauss, "Coupled photonic crystal heterostructure nanocavities," Opt. Express 15, 1228-1233 (2007). [CrossRef]
  14. T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, "Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity," Nat. Photonics 1, 49-52 (2007). [CrossRef]
  15. B. E. Little,  et al., "Very high-order microring resonator filters for WDM applications," IEEE Photon. Technol. Lett. 16, 2263-2265 (2004). [CrossRef]
  16. J. K. S. Poon, L. Zhu, G. A. DeRose, and A. Yariv, "Transmission and group delay of microring coupled-resonator optical waveguides," Opt. Lett. 31, 456-458 (2006). [CrossRef]
  17. F. Morichetti, A. Melloni, C. Canavesi, F. Persia, M. Martinelli, and M. Sorel, "Tunable Slow-Wave Optical Delay-Lines," in Slow and Fast Light, Technical Digest (CD) (Optical Society of America, 2006), paper MB2.
  18. F. Morichetti, A. Melloni, A. Breda, A. Canciamilla, C. Ferrari, and M. Martinelli, "A reconfigurable architecture for continuously variable optical slow-wave delay lines," Opt. Express 15, 17273-17282 (2007). [CrossRef]
  19. A. Melloni, R. Costa, P. Monguzzi, and M. Martinelli, "Ring-resonator filters in silicon oxynitride technology for dense wavelength-division multiplexing systems," Opt. Lett. 28, 1567-1569 (2003). [CrossRef]
  20. F. Morichetti, R. Costa, G. Cusmai, A. Cabas, M. Fer???e, M. C. Ubaldi, A. Melloni, and M. Martinelli, "Integrated optical receiver for RZ-DQPSK transmission systems," in Proc. of Optical Fiber Communication Conference 2, Los Angeles, CA, Feb. 23-27 (2004).
  21. C.K. Madsen, M. Cappuzzo, E.J. Laskowski, E. Chen, L. Gomez, A. Griffin, A. Wong-Foy, S. Chandrasekhar, L. Stulz, and L. Buhl, "Versatile integrated PMD emulation and compensation elements," IEEE J. Lightwave Technol. 22, 1041 (2007). [CrossRef]
  22. A. Melloni, F. Morichetti, and M. Martinelli, "Linear and nonlinear pulse propagation in coupled resonator slowwave optical structures," Opt. Quantum Electron. 35, 365-379 (2003). [CrossRef]
  23. A. Melloni, and F. Morichetti, "Observation of Subluminal and Superluminal Velocity Swinging in Coupled Mode Optical Propagation," Phys. Rev. Lett. 98, 173902 (2007). [CrossRef]
  24. B. Zhang, L. Yan, I. Fazal, L. Zhang, A. E. Willner, Z. Zhu, and D. J. Gauthier, "Slow light on Gbit/s differentialphase- shift-keying signals," Opt. Express 15, 1878-1883 (2007). [CrossRef]
  25. L. Yi,W. Hu, Y. Su, M. Gao, and L. Leng, "Design and system demonstration of a tunable slow-light delay line based on fiber parametric process," IEEE Photon. Technol. Lett. 18, 2575-2577, (2006). [CrossRef]
  26. ITU-T Rec. G-872, "Architecture of optical transport networks," Gen`eve, (2005).
  27. A. Melloni, F. Morichetti, and C. Ferrari, "1-byte reconfigurable integrated optic delay-line," in Slow and Fast Light, Technical Digest (CD) (Optical Society of America, 2008).
  28. B. Little, "VLSI photonics platform," Optical Fiber Communication Conference 2, Atlanta, Georgia, Mar. 23-27, paper ThD1 (2003).
  29. F. Morichetti, A. Melloni, M. Martinelli, R. G. Heideman, A. Leinse, D. H. Geuzebroek, and A. Borreman, "Box-Shaped Dielectric Waveguides: A New Concept in Integrated Optics?," J. Lightwave Technol. 25, 2579- 2589 (2007). [CrossRef]
  30. F. G. Sedgwick, B. Pesala, J. Y. Lin,W. S. Ko, X. Zhao, and C. J. Chang-Hasnain, "THz-bandwidth tunable slow light in semiconductor optical amplifiers," Opt. Express 15, 747-753 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: MPG (4178 KB)     
» Media 2: MPG (3168 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited