OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 12 — Jun. 9, 2008
  • pp: 8406–8420

Full-range, high-speed, high-resolution 1-µm spectral-domain optical coherence tomography using BM-scan for volumetric imaging of the human posterior eye

Shuichi Makita, Tapio Fabritius, and Yoshiaki Yasuno  »View Author Affiliations

Optics Express, Vol. 16, Issue 12, pp. 8406-8420 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (4530 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An alternative optical coherence tomography (OCT) to clinical ophthalmic 830 nm spectral-domain OCTs (SD-OCT) is demonstrated. An axial resolution of 7.4 µm, ranging depth of 4.2 mm in tissue, sensitivity of 98.5 dB, and detection speed of 38,300 axial scans/s have been achieved. These are comparable or superior to those of recently commercially available ophthalmic 830 nm SD-OCTs in clinics. In addition, fast volumetric imaging for the in vivo human posterior eye with high-contrast of the choroid is achieved. A broadband 1.04 µm light source enables the high-contrast and high resolution imaging of the retina and choroid. The ranging depth is extended by applying a full-range imaging method with an electro-optic modulator (BM-scan method). A prototype high-speed InGaAs line scan camera with 1024 pixels is used. A newly reported sensitivity improvement property of the BM-scan method demonstrates a sensitivity enhancement of 5.1 dB. We also introduce a newly developed resampling calibration method of spectrum that is independent of the intrinsic dispersion mismatch of the interferometer. The three-dimensional structure of the in vivo human optic nerve head with a very deep cupping is successfully visualized.

© 2008 Optical Society of America

OCIS Codes
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.4470) Medical optics and biotechnology : Ophthalmology
(170.4500) Medical optics and biotechnology : Optical coherence tomography

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: March 25, 2008
Revised Manuscript: May 13, 2008
Manuscript Accepted: May 16, 2008
Published: May 23, 2008

Virtual Issues
Vol. 3, Iss. 7 Virtual Journal for Biomedical Optics

Shuichi Makita, Tapio Fabritius, and Yoshiaki Yasuno, "Full-range, high-speed, high-resolution 1-μm spectral-domain optical coherence tomography using BM-scan for volumetric imaging of the human posterior eye," Opt. Express 16, 8406-8420 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Fercher, C. Hitzenberger, G. Kamp, and S. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995). [CrossRef]
  2. G. Hausler and M. W. Lindner, ""Coherence Radar" and "Spectral Radar"-New Tools for Dermatological Diagnosis," J. Biomed. Opt. 3, 21-31 (1998). [CrossRef]
  3. T. Mitsui, "Dynamic range of optical reflectometry with spectral interferometry," Jpn. J. Appl. Phys. 38, 6133- 6137 (1999). [CrossRef]
  4. R. Leitgeb, C. Hitzenberger, and A. Fercher, "Performance of fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889-894 (2003), http://www.opticsexpress.org/abstract.cfm?id=71990. [CrossRef] [PubMed]
  5. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, "Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography," Opt. Lett. 28, 2067-2069 (2003). [CrossRef] [PubMed]
  6. M. Choma, M. Sarunic, C. Yang, and J. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 11, 2183-2189 (2003), http://www.opticsexpress.org/abstract.cfm?id=78787. [CrossRef] [PubMed]
  7. N. Nassif, B. Cense, B. H. Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, "In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography," Opt. Lett. 29, 480-482 (2004). [CrossRef] [PubMed]
  8. S. Alam, R. J. Zawadzki, S. Choi, C. Gerth, S. S. Park, L. Morse, and J. S. Werner, "Clinical Application of Rapid Serial Fourier-Domain Optical Coherence Tomography for Macular Imaging," Ophthalmology 113, 1425-1431 (2006). [CrossRef] [PubMed]
  9. M. Hangai, Y. Ojima, N. Gotoh, R. Inoue, Y. Yasuno, S. Makita, M. Yamanari, T. Yatagai, M. Kita, and N. Yoshimura, "Three-dimensional Imaging of Macular Holes with High-speed Optical Coherence Tomography," Ophthalmology 114, 763-773 (2007). [CrossRef]
  10. M. Hammer, A. Roggan, D. Schweitzer, and G. M¨uller, "Optical properties of ocular fundus tissues-an in vitro study using the double-integrating-sphere technique and inverse Monte Carlo simulation." Phys. Med. Biol. 40, 963-978 (1995). [CrossRef] [PubMed]
  11. B. Povazay, K. Bizheva, B. Hermann, A. Unterhuber, H. Sattmann, A. Fercher, W. Drexler, C. Schubert, P. Ahnelt, M. Mei, R. Holzwarth, W. Wadsworth, J. Knight, and P. S. J. Russell, "Enhanced visualization of choroidal vessels using ultrahigh resolution ophthalmic OCT at 1050 nm," Opt. Express 11, 1980-1986 (2003), http://www.opticsexpress.org/abstract.cfm?URI=oe-11-17-1980. [CrossRef] [PubMed]
  12. A. Unterhuber, B. Pova?zay, B. Hermann, H. Sattmann, A. Chavez-Pirson, and W. Drexler, "In vivo retinal optical coherence tomography at 1040 nm-enhanced penetration into the choroid," Opt. Express 13, 3252-3258 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-9-3252. [CrossRef] [PubMed]
  13. E. C. Lee, J. F. de Boer, M. Mujat, H. Lim, and S. H. Yun, "In vivo optical frequency domain imaging of human retina and choroid," Opt. Express 14, 4403-4411 (2006), http://www.opticsexpress.org/abstract.cfm?id=89920. [CrossRef] [PubMed]
  14. Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, "In vivo high-contrast imaging of deep posterior eye by 1-??m swept source optical coherence tomography and scattering optical coherence angiography," Opt. Express 15, 6121-6139 (2007), http://www.opticsexpress.org/abstract.cfm?id=134551. [CrossRef] [PubMed]
  15. R. Huber, D. C. Adler, V. J. Srinivasan, and J. G. Fujimoto, "Fourier domain mode locking at 1050 nm for ultrahigh- speed optical coherence tomography of the human retina at 236,000 axial scans per second." Opt. Lett. 32, 2049-2051 (2007). [CrossRef] [PubMed]
  16. B. Povazay, B. Hermann, A. Unterhuber, B. Hofer, H. Sattmann, F. Zeiler, J. E. Morgan, C. Falkner-Radler, C. Glittenberg, S. Blinder, and W. Drexler, "Three-dimensional optical coherence tomography at 1050 nm versus 800 nm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients," J. Biomed. Opt. 12, 041211 (pages 7) (2007). [CrossRef] [PubMed]
  17. G. Hale and M. Querry, "Optical constants of water in the 200-nm to 200-??m wavelength region," Appl. Opt. 12, 555-563 (1973). [CrossRef] [PubMed]
  18. Y. Wang, J. Nelson, Z. Chen, B. Reiser, R. Chuck, and R. Windeler, "Optimal wavelength for ultrahigh-resolution optical coherence tomography," Opt. Express 11, 1411-1417 (2003), http://www.opticsexpress.org/abstract.cfm?URI=oe-11-12-1411. [CrossRef] [PubMed]
  19. M. Wojtkowski, A. Kowalczyk, R. Leitgeb, and A. Fercher, "Full range complex spectral optical coherence tomography technique in eye imaging," Opt. Lett. 27, 1415-1417 (2002). [CrossRef]
  20. A. Bachmann, R. Leitgeb, and T. Lasser, "Heterodyne Fourier domain optical coherence tomography for full range probing with high axial resolution," Opt. Express 14, 1487-1496 (2006), http://www.opticsexpress.org/abstract.cfm?id=88060. [CrossRef] [PubMed]
  21. Y. Yasuno, S. Makita, T. Endo, G. Aoki, H. Sumimura, M. Itoh, and T. Yatagai, "One-shot-phase-shifting Fourier domain optical coherence tomography by reference wavefront tilting," Opt. Express 12, 6184-6191 (2004), http://www.opticsexpress.org/abstract.cfm?id=81980. [CrossRef] [PubMed]
  22. M. A. Choma, C. Yang, and J. A. Izatt, "Instantaneous quadrature low-coherence interferometry with 3?3 fiberoptic couplers," Opt. Lett. 28, 2162-2164 (2003). [CrossRef] [PubMed]
  23. B. Vakoc, S. Yun, G. Tearney, and B. Bouma, "Elimination of depth degeneracy in optical frequency-domain imaging through polarization-based optical demodulation," Opt. Lett. 31, 362-364 (2006). [CrossRef] [PubMed]
  24. Y. K. Tao, M. Zhao, and J. A. Izatt, "High-speed complex conjugate resolved retinal spectral domain optical coherence tomography using sinusoidal phase modulation," Opt. Lett. 32, 2918-2920 (2007). [CrossRef] [PubMed]
  25. A. Vakhtin, K. Peterson, and D. Kane, "Resolving the complex conjugate ambiguity in Fourier-domain OCT by harmonic lock-in detection of the spectral interferogram," Opt. Lett. 31, 1271-1273 (2006). [CrossRef] [PubMed]
  26. Y. Yasuno, S. Makita, T. Endo, G. Aoki, M. Itoh, and T. Yatagai, "Simultaneous B-M-mode scanning method for real-time full-range Fourier domain optical coherence tomography," Appl. Opt. 45, 1861-1865 (2006). [CrossRef] [PubMed]
  27. R. K. Wang, "In vivo full range complex Fourier domain optical coherence tomography," Appl. Phys. Lett. 90, 054,103 (2007).
  28. B. Baumann, M. Pircher, E. G¨otzinger, and C. K. Hitzenberger, "Full range complex spectral domain optical coherence tomography without additional phase shifters," Opt. Express 15, 13,375-13, 387 (2007), http://www.opticsexpress.org/abstract.cfm?URI=oe-15-20-13375. [CrossRef]
  29. R. A. Leitgeb, R. Michaely, T. Lasser, and S. C. Sekhar, "Complex ambiguity-free Fourier domain optical coherence tomography through transverse scanning," Opt. Lett. 32, 3453-3455 (2007). [CrossRef] [PubMed]
  30. L. An and R. K. Wang, "Use of a scanner to modulate spatial interferograms for in vivo full-range Fourier-domain optical coherence tomography," Opt. Lett. 32, 3423-3425 (2007). [CrossRef] [PubMed]
  31. S. Vergnole, G. Lamouche, and M. L. Dufour, "Artifact removal in Fourier-domain optical coherence tomography with a piezoelectric fiber stretcher," Opt. Lett. 33, 732-734 (2008). [CrossRef] [PubMed]
  32. American National Standard Institute, American National Standard for Safe Use of Lasers: ANSI Z136.1 (Laser Institute of America, Orlando, Florida, 2000).
  33. Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K.-P. Chan, M. Itoh, and T. Yatagai, "Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments," Opt. Express 13, 10,652-10,664 (2005), http://www.opticsexpress.org/abstract.cfm?id=86669. [CrossRef]
  34. S. Yun, G. Tearney, B. Bouma, B. Park, and J. de Boer, "High-speed spectral-domain optical coherence tomography at 1.3 ??m wavelength," Opt. Express 11, 3598-3604 (2003) http://www.opticsexpress.org/abstract.cfm?id=78225. [CrossRef] [PubMed]
  35. M. Szkulmowski, A. Szkulmowska, T. Bajraszewski, A. Kowalczyk, and M. Wojtkowski, "Flow velocity estimation using joint Spectral and Time domain Optical Coherence Tomography," Opt. Express 16, 6008-6025 (2008) http://www.opticsexpress.org/abstract.cfm?URI=oe-16-9-6008, [CrossRef] [PubMed]
  36. E. J. McDowell, X. Cui, Z. Yaqoob, and C. Yang, "A generalized noise variance analysis model and its application to the characterization of 1/f noise," Opt. Express 15, 3833-3848 (2007) http://www.opticsexpress.org/abstract.cfm?URI=oe-15-7-3833, [CrossRef] [PubMed]
  37. J. Greivenkamp and J. Bruning, "Phase shifting interferometries," in Optical shop testing, D. Malacara, ed.,Wiley Series in Pure and Applied Optics, 2nd ed., chap. 14, pp. 501-598 (John Wiley & Sons Inc., 1992).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (2788 KB)     
» Media 2: MOV (2337 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited