OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 12 — Jun. 9, 2008
  • pp: 8421–8426

Optical bistability in metal gap waveguide nanocavities

Yun Shen and Guo Ping Wang  »View Author Affiliations


Optics Express, Vol. 16, Issue 12, pp. 8421-8426 (2008)
http://dx.doi.org/10.1364/OE.16.008421


View Full Text Article

Enhanced HTML    Acrobat PDF (221 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Metal-dielectric nanocavities constructed by filling a piece of nonlinear optical material into metal gap waveguides are introduced for realizing optical bistability in nanodomain. Finite-difference time-domain simulation reveal that such a structure can realize optical bistable effect with much weaker operating light power in a nanoscale nonlinear medium. We attribute it to the enhancement of local field intensity and nanoscale confinement of surface plasmon polaritons. Our results verify a feasible way for constructing nanoscale optical logical gates, switches, and all-optical transistors etc. for high density integration of optical circuits.

© 2008 Optical Society of America

OCIS Codes
(190.1450) Nonlinear optics : Bistability
(230.7370) Optical devices : Waveguides
(240.6680) Optics at surfaces : Surface plasmons
(260.3910) Physical optics : Metal optics

ToC Category:
Nonlinear Optics

History
Original Manuscript: April 16, 2008
Revised Manuscript: May 13, 2008
Manuscript Accepted: May 13, 2008
Published: May 23, 2008

Citation
Yun Shen and Guo Ping Wang, "Optical bistability in metal gap waveguide nanocavities," Opt. Express 16, 8421-8426 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-12-8421


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. M. Gibbs, Optical Bistability: Controlling Light with Light (Academic, New York, 1985).
  2. M. Soljacic, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, "Optimal bistable switching in nonlinear photonic crystals," Phys. Rev. E 66, 055601(R) (2002).. H. G. Winful, J. H. Marburger, and E. Garmire, "Theory of bistability in nonlinear distributed feedback structures," Appl. Phys. Lett. 35, 379-381 (1979). [CrossRef]
  3. G. I. Stegeman, G. Assanto, R. Zanoni, C. T. Seaton, E. Garmire, A. A. Maradudin, R. Reinisch, and G. Vitrant, "Bistability and switching in nonlinear prism coupling," Appl. Phys. Lett. 52, 869-871 (1988). [CrossRef]
  4. G. Priem, P. Dumon, W. Bogaerts, D. Van Thourhoutm, G. Morthier, and R. Baets, "Optical bistability and pulsating behaviour in Silicon-On-Insulator ring resonator structures," Opt. Express 13, 9623-9628 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-23-9623. [CrossRef]
  5. E. Centeno and D. Felbacq, "Optical bistability in finite-size nonlinear bidimensional photonic crystals doped by a microcavity," Phys. Rev. B 62, R7683-R7686 (2000). [CrossRef] [PubMed]
  6. M. G. Banaee, A. R. Cowan, and J. F. Young, "Third-order nonlinear influence on the specular reflectivity of two-dimensional waveguide-based photonic crystals," J. Opt. Soc. Am. B. 19, 2224-2231 (2002). [CrossRef]
  7. X. Chen, "Intrinsic optical intersubband bistability and saturation in a quantum well microcavity structure," J. Opt. B: Quantum Semiclass. Opt. 1, 524-528 (1999). [CrossRef]
  8. G. A. Wurtz, R. Pollard, and A. V. Zayats, "Optical bistability in Nonlinear Surface-Plasmon Polaritonic Crystals," Phys. Rev. Lett. 97, 057402 (2006). [CrossRef]
  9. A. Husakou and J. Herrmann, "Steplike Transmission of Light through a Metal-Dielectric Multilayer Structure due to an Intensity-Dependent Sign of the Effective Dielectric Constant," Phys. Rev. Lett. 99, 127402 (2007). [CrossRef] [PubMed]
  10. C. J. Min, P. Wang, X. J. Jiao, Y. Deng, and H. Ming, "Optical bistability in subwavelength metallic grating coated by nonlinear material," Opt. Express 15, 12368-12373 (2007), http://www.opticsexpress.org/abstract.cfm?uri=OE-15-19-12368. [CrossRef] [PubMed]
  11. H. T. Miyazaki and Y. Kurokawa, "Squeezing Visible Light Waves into a 3-nm-Thick and 55-nm-Long Plasmon Cavity," Phys. Rev. Lett. 96, 097401 (2006). [CrossRef] [PubMed]
  12. H. M. Gibbs, S. L. McCall, T. N. C. Venkatesan, A. C. Gossard, A. Passner, and W. Wiegmann, "Optical bistability in semiconductors," Appl. Phys. Lett. 35, 451-453 (1979). [CrossRef] [PubMed]
  13. D. A. B. Miller, "Refractive Fabry-Perot Bistability with Linear Absorption: Theory of Operation and Cavity Optimizeion," IEEE J. Quantum Electron. QE- 17, 306-311 (1981). [CrossRef]
  14. R. W. Boyd, Nonlinear Optics (Academic, New York, 1992). [CrossRef]
  15. I. P. Kaminow, W. L. Mammel, and H. P. Weber, "Metal-Clad Optical Waveguides: Analytical and Experimental Study," Appl. Opt. 13, 396-405 (1974).
  16. B. Wang and G. P. Wang, "Plasmon Bragg reflectors and nanocavities on flat metallic surfaces," Appl. Phys. Lett. 87, 013107 (2005). [CrossRef] [PubMed]
  17. R. M. Joseph and A. Taflove, "FDTD Maxwell?s Equations Models for Nonlinear Electrodynamics and Optics," IEEE Trans. Antennas Propag. 45, 364-374 (1997). [CrossRef]
  18. S. Martellucci and A. N. Chester, Integrated Optics Physics and Applications (Plenum, New York, 1983). [CrossRef]
  19. B. Wang and G. Ping Wang, "Metal heterowaveguides for nanometric focusing of light," Appl. Phys. Lett. 85, 3599-3601 (2004).
  20. E. D. Palik, Handbook of Optical Constants of Solids (Academic, London, 1985). [CrossRef]
  21. T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, and M. M. Fejer, "Improved dispersion relations for GaAs and applications to nonlinear optics," J. Appl. Phys. 94, 6447-6455 (2003).
  22. P. Wen, M. Sanchez, M. Gross, and S. Esener, "Observation of bistability in a Vertical-Cavity Semiconductor Optical Amplifier (VCSOA)," Opt. Express 10, 1273-1278 (2002). [CrossRef]
  23. J. A. Porto, L. Martin-Moreno, and F. J. Garcia-Vidal, "Optical bistability in subwavelength slit apertures containing nonlinear media," Phys. Rev. B 70, 081402(R) (2004). [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited