OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 12 — Jun. 9, 2008
  • pp: 8532–8548

Bend performance-enhanced photonic crystal fibers with anisotropic numerical aperture

Benjamin G. Ward  »View Author Affiliations

Optics Express, Vol. 16, Issue 12, pp. 8532-8548 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (968 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Numerical calculations predict that particular birefringent photonic crystal fiber designs exhibit slightly better performance in a coiled configuration than non-birefringent step-index fiber designs with respect to higher order mode suppression for the realization of large mode area effectively single transverse mode fibers. The passive losses of the fundamental and first few higher order modes of a birefringent photonic crystal fiber design with a 41µm diameter core incorporating stress applying parts (SAP) were calculated using an integrated electromechanical finite element method. Minimum higher order mode losses of up to 5.5 dB/m were predicted for fundamentalmode losses of only 0.0014 dB/m. The bend performance of this PCF design was predicted to be relatively insensitive to manufacturing tolerances with respect to air hole size and device assembly tolerances with respect to coiling diameter based on the calculated dependence of the mode losses on these parameters. The positions and refractive index of the SAP render the numerical aperture of the core anisotropic allowing further tailoring of the bend performance by adjusting the angle between the coiling plane of the fiber and the orientation of the SAP within the cladding. Fundamental and higher-order mode losses are calculated for step-index fiber (SIF) designs with a 40µm diameter core for comparison. The step-index fiber designs were predicted to exhibit slightly inferior bend loss mode discrimination and higher sensitivity to packaging configuration compared to the photonic crystal fiber designs presented.

© 2008 Optical Society of America

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.2310) Fiber optics and optical communications : Fiber optics
(060.2320) Fiber optics and optical communications : Fiber optics amplifiers and oscillators
(140.3510) Lasers and laser optics : Lasers, fiber
(230.7370) Optical devices : Waveguides
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Photonic Crystal Fibers

Original Manuscript: April 10, 2008
Revised Manuscript: May 21, 2008
Manuscript Accepted: May 23, 2008
Published: May 27, 2008

Benjamin G. Ward, "Bend performance-enhanced photonic crystal fibers with anisotropic numerical aperture," Opt. Express 16, 8532-8548 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. Jeong, J. Nilsson, J. K. Sahu, D. B. S. Soh, C. Alegria, P. Dupriez, C. A. Codemard, D. N. Payne, R. Horley, L. M. B. Hickey, L. Wanzcyk, C. E. Chryssou, J. A. Alvarez-Chavez, and P. W. Turner, "Single-frequency, singlemode, plane-polarized ytterbium-doped fiber master oscillator power amplifier source with 264 W of output power," Opt. Lett. 30, 459-461 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=ol-30-5-459. [CrossRef] [PubMed]
  2. M. Hildebrandt, M. Frede, P. Kwee, B. Willke, and D. Kracht, "Single-frequency master-oscillator photonic crystal fiber amplifier with 148 W output power," Opt. Express 14, 11071-11076 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-23-11071. [CrossRef] [PubMed]
  3. A. Liem, J. Limpert, H. Zellmer, and A. Tnnermann, "100-W single-frequency master-oscillator fiber power amplifier," Opt. Lett. 28, 1537-1539 (2003), http://www.opticsinfobase.org/abstract.cfm?URI=ol-28-17-1537. [CrossRef] [PubMed]
  4. S. Hfer, A. Liem, J. Limpert, H. Zellmer, A. Tnnermann, S. Unger, S. Jetschke, H. -R. Mller, and I. Freitag, "Single-frequency master-oscillator fiber power amplifier system emitting 20 Wof power," Opt. Lett. 26, 1326-1328 (2001), http://www.opticsinfobase.org/abstract.cfm?URI=ol-26-17-1326. [CrossRef]
  5. I. Zawischa, K. Plamann, C. Fallnich, H. Welling, H. Zellmer, and A. Tnnermann, "All-solid-state neodymiumbased single-frequency master-oscillator fiber power-amplifier system emitting 5.5 W of radiation at 1064 nm," Opt. Lett. 24, 469-471 (1999), http://www.opticsinfobase.org/abstract.cfm?URI=ol-24-7-469. [CrossRef]
  6. J. P. Koplow, D. A. V. Kliner, and L. Goldberg, "Single-mode operation of a coiled multimode fiber amplifier," Opt. Lett. 25, 442-444 (2000), http://www.opticsinfobase.org/abstract.cfm?URI=ol-25-7-442. [CrossRef]
  7. J. Limpert, O. Schmidt, J. Rothhardt, F. Rser, T. Schreiber, A. Tnnermann, S. Ermeneux, P. Yvernault, and F. Salin, "Extended single-mode photonic crystal fiber lasers," Opt. Express 14, 2715-2720 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-7-2715. [CrossRef] [PubMed]
  8. T. -w. Wu, L. Dong, and H. Winful, "Bend performance of leakage channel fibers," Opt. Express 16, 4278-4285 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-6-4278. [CrossRef] [PubMed]
  9. W. S. Wong, X. Peng, J. M. McLaughlin, and L. Dong, "Breaking the limit of maximum effective area for robust single-mode propagation in optical fibers," Opt. Lett. 30, 2855-2857 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=ol-30-21-2855. [CrossRef] [PubMed]
  10. J. Fini, "Design of solid and microstructure fibers for suppression of higher-order modes," Opt. Express 13, 3477-3490 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-9-3477. [CrossRef] [PubMed]
  11. R. T. Schermer and J. H. Cole, "Improved Bend Loss Formula Verified for Optical Fiber by Simulation and Experiment, " IEEE J. Quantum Electron. 43, 899-909 (2007). [CrossRef]
  12. R. D. Cook, Finite Element Modeling for Stress Analysis (Wiley, New York, 1995).
  13. B. G. Ward, "Finite Element Analysis of Photonic Crystal Rods with Anisotropic Inhomogeneous Refractive Index Tensor, " IEEE J. Quantum Electron. 44, 150-156 (2008). [CrossRef]
  14. K. Sakoda, Optical Properties of Photonic Crystals (Springer, New York, 2001).
  15. T. P. White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. M. de Sterke, and L. C. Botten, "Multipole method for microstructured optical fibers. I. Formulation, " J. Opt. Soc. Am. B 19, 2322-2330 (2002). [CrossRef]
  16. B. T. Kuhlmey, University of Sydney Australian Research Counsel Centre of Excellence for Ultrahigh-bandwidth Devices for Optical Systems Microstructured Optical Fibre Utilties Software 2004.
  17. F. L. Teixeira and W. C. Chew, "General Closed-Form PML Constitutive Tensors to Match Arbitrary Bianisotropic and Dispersive Linear Media," IEEE Microwave Guid. Wave Lett. 8, 223-225 (1998). [CrossRef]
  18. J.-P. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves," J. Comput. Phys. 114, 185-200 (1994). [CrossRef]
  19. T. Schreiber, F. Rser, O. Schmidt, J. Limpert, R. Iliew, F. Lederer, A. Petersson, C. Jacobsen, K. Hansen, J. Broeng, and A. Tnnermann, "Stress-induced single-polarization single-transverse mode photonic crystal fiber with low nonlinearity," Opt. Express 13, 7621-7630 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-19-7621. [CrossRef] [PubMed]
  20. K. Saitoh and M. Koshiba, "Full-vectorial imaginary-distance beam propagation method based on finite element scheme: Application to photonic crystal fibers," IEEE J. Quantum Electron. 38, 927-933 (2002). [CrossRef]
  21. J. Olszewski, M. Szpulak, and W. Urbanczyk, "Effect of coupling between fundamental and cladding modes on bending losses in photonic crystal fibers," Opt. Express 13, 6015-6022 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-16-6015. [CrossRef] [PubMed]
  22. J. Kepner, "Parallel Programming with MatlabMPI," in Proceedings of the High Performance Embedded Computing (HPEC 2001) workshop,(MIT Lincoln Laboratory, Lexington, MA, 2001).
  23. S. Balay, K. Buschelman, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, B. F. Smith, and H. Zhang, PETSc Users Manual ANL-95/11 - Revision 2.1.5, Argonne National Laboratory, 2004.
  24. V. Hernandez and J. E. Roman and V. Vidal, "SLEPc: A Scalable and Flexible Toolkit for the Solution of Eigenvalue Problems," ACM Transactions on Mathematical Software,  31, 351-362 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited