OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 12 — Jun. 9, 2008
  • pp: 8570–8580

Dispersion and extinction of surface plasmons in an array of gold nanoparticle chains: influence of the air/glass interface

Tian Yang and Kenneth B. Crozier  »View Author Affiliations


Optics Express, Vol. 16, Issue 12, pp. 8570-8580 (2008)
http://dx.doi.org/10.1364/OE.16.008570


View Full Text Article

Enhanced HTML    Acrobat PDF (1280 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate the dispersion relation and extinction properties of surface plasmons in an array of gold nanoparticle chains under s-polarized plane wave excitations, through experiment and simulation. Our results reveal that the dispersion and extinction properties of gold nanoparticle chains at an air/glass interface are significantly different from those in a uniform medium. Under total internal reflection, the dispersion is much larger than that above total internal reflection and 100% extinction can be reached. We show that the large dispersion under total internal reflection can be explained by dipole fields and coupling at the air/glass interface.

© 2008 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(290.5820) Scattering : Scattering measurements
(230.4555) Optical devices : Coupled resonators

ToC Category:
Optics at Surfaces

History
Original Manuscript: May 16, 2008
Manuscript Accepted: May 20, 2008
Published: May 27, 2008

Virtual Issues
Vol. 3, Iss. 7 Virtual Journal for Biomedical Optics

Citation
Tian Yang and Kenneth B. Crozier, "Dispersion and extinction of surface plasmons in an array of gold nanoparticle chains: influence of the air/glass interface," Opt. Express 16, 8570-8580 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-12-8570


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, "Electromagnetic energy transport via linear chains of silver nanoparticles," Opt. Lett. 23, 1331-1333 (1998). [CrossRef]
  2. M. L. Brongersma, J. W. Hartman, and H. A. Atwater, "Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit," Phys. Rev. B 62, R16356-16359 (2000). [CrossRef]
  3. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nat. Mater. 2, 229-232 (2003). [CrossRef]
  4. N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Aussenegg, "Optimized surface-enhanced Raman scattering on gold nanoparticle arrays," Appl. Phys. Lett. 82, 3095-3097 (2003). [CrossRef]
  5. J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, and J. P. Goudonnet, "Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles," Phys. Rev. Lett. 82, 2590-2593 (1999). [CrossRef]
  6. B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, "Metal Nanoparticle Gratings: Influence of Dipolar Particle Interaction on the Plasmon Resonance," Phys. Rev. Lett. 84, 4721-4724 (2000). [CrossRef] [PubMed]
  7. S. A. Maier, M. L. Brongersma, P. G. Kik, and H. A. Atwater, "Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy," Phys. Rev. B 65, 193408 (2002). [CrossRef]
  8. S. A. Maier, P. G. Kik, and H. A. Atwater, "Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss," Appl. Phys. Lett. 81, 1714-1716 (2002). [CrossRef]
  9. Q.-H. Wei, K.-H. Su, S. Durant, and X. Zhang, "Plasmon Resonance of Finite One-Dimensional Au Nanoparticle Chains," Nano Lett. 4, 1067-1071 (2004). [CrossRef]
  10. Q1. C. L. Haynes, A. D. McFarland, L. L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. J. Kall, "Nanoparticle Optics: The Importance of Radiative Dipole Coupling in Two-Dimensional Nanoparticle Arrays," Phys. Chem. B 107, 7337-7342 (2003). [CrossRef]
  11. S. Zou, N. Janel, and G. C. Schatz, "Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes," J. Chem. Phys. 120, 10871-10875 (2004). [CrossRef] [PubMed]
  12. E. M. Hicks, S. Zou, G. C. Schatz; K. G. Spears, R. P. V. Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Kall, "Controlling Plasmon Line Shapes through Diffractive Coupling in Linear Arrays of Cylindrical Nanoparticles Fabricated by Electron Beam Lithography," Nano Lett. 5, 1065-1070 (2005). [CrossRef] [PubMed]
  13. W. H. Weber and G. W. Ford, "Propagation of optical excitations by dipolar interactions in metal nanoparticle chains," Phys. Rev. B 70, 125429 (2004). [CrossRef]
  14. S. Y. Park and D. Stroud, "Surface-plasmon dispersion relations in chains of metallic nanoparticles: An exact quasistatic calculation," Phys. Rev. B 69, 125418 (2004). [CrossRef]
  15. A. F. Koenderink and A. Polman, "Complex response and polariton-like dispersion splitting in periodic metal nanoparticle chains," Phys. Rev. B 74, 033402 (2006). [CrossRef]
  16. A. F. Koenderink, R. de Waele, J. C. Prangsma, and A. Polman, "Experimental evidence for large dynamic effects on the plasmon dispersion of subwavelength metal nanoparticle waveguides," Phys. Rev. B 76, 201403(R) (2007). [CrossRef]
  17. J. Sung, E. M. Hicks, R. P. Van Duyne, and K. G. Spears, "Nanoparticle Spectroscopy: Dipole Coupling in Two-Dimensional Arrays of L-shaped Silver Nanoparticles," J. Phys. Chem. C 111, 10368-10376 (2007). [CrossRef]
  18. P. Ghenuche, I. G. Cormack, G. Badenes, P. Loza-Alvarez, and R. Quidant, "Cavity resonances in finite plasmonic chains," Appl. Phys. Lett. 90, 041109 (2007). [CrossRef]
  19. K. B. Crozier, E. Togan, E. Simsek, and T. Yang, "Experimental measurement of the dispersion relations of the surface plasmon modes of metal nanoparticle chains," Opt. Express 15, 17482-17493 (2007). [CrossRef] [PubMed]
  20. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Ch. 7 (Artech House Antennas and Propagation Library, 2000).
  21. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, "Optical properties of metallic films for vertical-cavity optoelectronic devices," Appl. Opt. 37, 5271-5283 (1998). [CrossRef]
  22. J. Lu, C. Petre, J. Conway, and E. Yablonovitch, "Numerical optimization of a grating coupler for the efficient excitation of surface plasmons at an Ag-SiO2 interface," arXiv:physics/0703036v1 [physics.optics] (2007).
  23. W. Lukosz and R. E. Kunz, "Light emission by magnetic and electric dipoles close to a plane interface. I. Total radiated power," J. Opt. Soc. Am. 67, 1607-1615 (1977). [CrossRef]
  24. W. Lukosz and R. E. Kunz, "Light emission by magnetic and electric dipoles close to a plane dielectric interface. II. Radiation patterns of perpendicular oriented dipoles," J. Opt. Soc. Am. 67, 1615-1619 (1977). [CrossRef]
  25. W. Lukosz and R. E. Kunz, "Light emission by magnetic and electric dipoles close to a plane dielectric interface. III. Radiation patterns of dipoles with arbitrary orientation," J. Opt. Soc. Am. 69, 1495-1503 (1979). [CrossRef]
  26. J. Mertz, "Radiative absorption, fluorescence, and scattering of a classical dipole near a lossless interface: a unified description," J. Opt. Soc. Am. B 17, 1906-1913 (2000). [CrossRef]
  27. S. J. Radzeviciusa, C.-C. Chenb, L. Peters Jr., and J. J. Daniels, "Near-field dipole radiation dynamics through FDTD modeling," J. Appl. Geophys. 52, 75-91 (2003). [CrossRef]
  28. L. Luan, P. R. Sievert, and J. B. Ketterson, "Near-field and far-field electric dipole radiation in the vicinity of a planar dielectric half space," New J. Phys. 8, 264 (2006). [CrossRef]
  29. L. Novotny L., and B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2006), Ch. 10.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited