OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 12 — Jun. 9, 2008
  • pp: 8581–8593

Fluorescence tomography characterization for sub-surface imaging with protoporphyrin IX

Dax Kepshire, Scott C. Davis, Hamid Dehghani, Keith D. Paulsen, and Brian W. Pogue  »View Author Affiliations

Optics Express, Vol. 16, Issue 12, pp. 8581-8593 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (449 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optical imaging of fluorescent objects embedded in a tissue simulating medium was characterized using non-contact based approaches to fluorescence remittance imaging (FRI) and sub-surface fluorescence diffuse optical tomography (FDOT). Using Protoporphyrin IX as a fluorescent agent, experiments were performed on tissue phantoms comprised of typical in-vivo tumor to normal tissue contrast ratios, ranging from 3.5:1 up to 10:1. It was found that tomographic imaging was able to recover interior inclusions with high contrast relative to the background; however, simple planar fluorescence imaging provided a superior contrast to noise ratio. Overall, FRI performed optimally when the object was located on or close to the surface and, perhaps most importantly, FDOT was able to recover specific depth information about the location of embedded regions. The results indicate that an optimal system for localizing embedded fluorescent regions should combine fluorescence reflectance imaging for high sensitivity and sub-surface tomography for depth detection, thereby allowing more accurate localization in all three directions within the tissue.

© 2008 Optical Society of America

OCIS Codes
(100.3190) Image processing : Inverse problems
(170.0110) Medical optics and biotechnology : Imaging systems
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.6960) Medical optics and biotechnology : Tomography

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: December 10, 2007
Revised Manuscript: March 5, 2008
Manuscript Accepted: March 14, 2008
Published: May 28, 2008

Virtual Issues
Vol. 3, Iss. 7 Virtual Journal for Biomedical Optics

Dax Kepshire, Scott C. Davis, Hamid Dehghani, Keith D. Paulsen, and Brian W. Pogue, "Fluorescence tomography characterization for sub-surface imaging with protoporphyrin IX," Opt. Express 16, 8581-8593 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. P. Stummer, U. T. Meinel, O. D. Wiestler, F. Zanella, and H.-J. Reulen, "Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial " Lancet Oncol. 7, 392-401 (2006). [CrossRef]
  2. A. Bogaards, A. Varma, S. P. Collens, A. Lin, A. Giles, V. Yang, J. M. Bilbao, L. D. Lilge, P. J. Muller, and B. C. Wilson, "Increased Brain Tumor Resection Using Fluorescence Image Guidance in a preclinical Model " Lasers Surg. Med. 35,181-190 (2004). [CrossRef] [PubMed]
  3. D. S. Kepshire, S. C. Davis, H. Dehghani, K. D. Paulsen, and B. W. Pogue, "Sub-Surface Diffuse Optical Tomography can Localize Absorber and Fluorescent Objects but Recovered Image Sensitivity is Non-Linear with Depth," Appl. Opt. 46, 1669-1678 (2007). [CrossRef] [PubMed]
  4. J. S. Reynolds, T. L. Troy, R. H. Mayer, A. B. Thompson, D. J. Waters, K. K. Cornell, P. W. Snyder, and E. M. Sevick-Muraca, "Imaging of spontaneous canine mammary tumors using fluorescent contrast agents," Photochem. Photobiol. 70, 87-94 (1999). [CrossRef] [PubMed]
  5. V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, "Looking and listening to light: the evolution of whole-body photonic imaging," Nat. Biotechnol. 23, 313-320 (2005). [CrossRef] [PubMed]
  6. V. Ntziachristos, C. Bremer, and R. Weissleder, "Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging," Eur. Radiol. 13, 195-208 (2003). [PubMed]
  7. E. M. Sevick-Muraca, J. P. Houston, and M. Gurfinkel, "Fluorescence-enhanced, near infrared diagnostic imaging with contrast agents," Curr. Op. Chem. Biol. 6, 642-650 (2002). [CrossRef]
  8. B. W. Pogue, S. L. Gibbs, and B. Chen, "Fluorescence Imaging In Vivo: Raster Scanned Point-Source Imaging Provides More Accurate Quantification than Broad Beam Geometries," Tech. Cancer Res. Treat. 3, 15-21 (2004).
  9. A. M. De Grand and J. V. Frangioni, "An operational near-infrared fluorescence imaging system prototype for large animal surgery," Tech. Cancer Res. Treat. 2, 553-562 (2003).
  10. E. E. Graves, R. Weissleder, and V. Ntziachristos, "Fluorescence molecular imaging of small animal tumor models," Curr. Molec. Med. 4, 419-430 (2004). [CrossRef]
  11. V. Ntziachristos, A. G. Yodh, M. Schnall, and B. Chance, "Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement," PNAS USA 97, 2767-2772 (2000). [CrossRef] [PubMed]
  12. B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, O. K. S., U. L. Osterberg, and K. D. Paulsen, "Quantitative Hemoglobin Tomography with Diffuse Near-Infrared Spectroscopy: Pilot Results in the Breast," Radiology 218, 261-266 (2001).
  13. V. Ntziachristos, A. G. Yodh, M. D. Schnall, and B. Chance, "MRI-guided diffuse optical spectroscopy of malignant and benign breast lesions," Neoplasia 4, 347-354 (2002). [CrossRef] [PubMed]
  14. M. Franceschini and D. A. Boas, "Noninvasive measurement of neuronal activity with near-infrared optical imaging," NeuroImage 21, 372-386 (2004). [CrossRef] [PubMed]
  15. J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, and J. S. Wyatt, "Three-dimensional optical tomography of the premature infant brain," Phys. Med. Biol. 47, 4155-4166 (2002). [CrossRef] [PubMed]
  16. A. Bluestone, G. Abdoulaev, C. Schmitz, R. Barbour, and A. Hielscher, "Three-dimensional optical tomography of hemodynamics in the human head," Opt. Express 9, 272-286 (2001). [CrossRef] [PubMed]
  17. J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, and A. G. Yodh, "Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia," J. Cereb. Blood Flow Met. 23, 911-924 (2003). [CrossRef]
  18. H. Xu, H. Dehghani, B. W. Pogue, R. F. Springett, K. D. Paulsen, and J. F. Dunn, "Near-infrared imaging in the small animal brain: optimization of fiber positions," J. Biomed. Opt. 8, 102-110 (2003). [CrossRef] [PubMed]
  19. V. Ntziachristos, C. H. Tung, C. Bremer, and R. Weissleder, "Fluorescence molecular tomography resolves protease activity in vivo," Nat. Med. 8, 757-760 (2002). [CrossRef] [PubMed]
  20. S. A. Friesen, G. O. Hjortland, S. J. Madsen, H. Hirschberg, O. Engebraten, J. M. Nesland, and Q. Peng, "5-Aminolevulinic acid-based photodynamic detection and therapy of brain tumors," Int. J. Oncol. 21, 577-582 (2002). [PubMed]
  21. B. W. Pogue, T. McBride, U. Osterberg, and K. Paulsen, "Comparison of imaging geometries for diffuse optical tomography of tissue," Opt. Express 4, 270-286 (1999). [CrossRef]
  22. J. Ripoll, R. B. Schulz, and V. Ntziachristos, "Free-space propagation of diffuse light: theory and experiments," Phys. Rev. Lett. 91, 5 (2003). [CrossRef]
  23. S. C. Davis, B. W. Pogue, H. Dehghani, and K. D. Paulsen, "Contrast-detail analysis characterizing diffuse optical fluorescence tomography image reconstruction," J. Biomed. Opt. Lett. 10, 1-3 (2005).
  24. K. D. Paulsen and JiangH. , "Spatially varying optical property reconstruction using a finite element diffusion equation approximation," Med. Phys. 22, 691-701 (1995). [CrossRef] [PubMed]
  25. M. S. Patterson and B. W. Pogue, "Mathimatical model for time-resolved and frequency-domain fluorescence spectroscopy in biological tissues," Appl. Opt. 33, 1963-1974 (1994). [CrossRef] [PubMed]
  26. B. W. Pogue, T. O. McBride, J. Prewitt, U. L. Osterberg, and K. D. Paulsen, "Spatially variant regularization improves diffuse optical tomography," Appl. Opt. 38, 2950-2961 (1999). [CrossRef]
  27. C. Sheng, P. J. Hoopes, T. Hasan, and B. W. Pogue, "Photobleaching-based Dosimetry Predicts Deposited Dose in ALA-PpIX PDT of Rodent Esophagus," Photochem. Photobiol. 83, 738-748 (2007). [CrossRef] [PubMed]
  28. X. Song, B. W. Pogue, S. Jiang, M. M. Doyley, H. Dehghani, T. D. Tosteson, and K. D. Paulsen, "Automated region detection based on the contrast-to-noise ratio in near-infrared tomography," Appl. Opt. 43, 1053-1062 (2004). [CrossRef] [PubMed]
  29. D. Kepshire, S. Gibbs, S. Davis, H. Dehghani, K. D. Paulsen, and B. W. Pogue, "Sub-surface Fluorescence Imaging of Protoporphyrin IX with B-Scan Mode Tomography," Proc. SPIE 6139, In Press (2006). [CrossRef]
  30. A. Soubret, J. Ripoll, and V. Ntziachristos, "Accuracy of Fluorescent Tomography in thePresence of Heterogeneities: Study of theNormalized Born Ratio," IEEE Trans. Med. Imag. 24, 1377-1386 (2005). [CrossRef]
  31. S. C. Partridge, J. E. Gibbs, Y. Lu, L. J. Esserman, D. Tripathy, D. S. Wolverton, H. S. Rugo, E. S. Hwang, C. A. Ewing, and N. M. Hylton, "MRI measurements of breast tumor volume predict response to neoadjuvant chemotherapy and recurrence-free survival," Am. J. Roentgenol. 184, 1774-1781 (2005).
  32. R. L. Barbour, H. L. Graber, J. Chang, S. S. Barbour, P. C. Koo, and R. Aronson, "MRI-Guided Optical Tomography: Prospects and Computation for a New Imaging Method," IEEE Comp. Sci. Eng. 2, 63-77 (1995). [CrossRef]
  33. B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, "Imaging Breast Adipose and Fibroglandular Tissue Molecular Signatures using Hybrid MRI-Guided Near-Infrared Spectral Tomography," PNAS USA 103, 8828-8833 (2006). [CrossRef] [PubMed]
  34. B. Brooksby, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, J. Weaver, C. Kogel, and S. P. Poplack, "Combining near infrared tomography and magnetic resonance imaging to study in vivo breast tissue: implementation of a Laplacian-type regularization to incorporate magentic reasonance structure," J. Biomed. Opt. 10, 051504-1-051504-10 (2005). [CrossRef]
  35. Q. Zhu, N. Chen, and S. H. Kurtzman, "Imaging tumor angiogenesis by use of combined near-infrared diffusive light and ultrasound," Opt. Lett. 28, 337-339 (2003). [CrossRef] [PubMed]
  36. Q. Zhu, S. H. Kurtzma, P. Hegde, S. Tannenbaum, M. Kane, M. Huang, N. G. Chen, B. Jagjivan, and K. Zarfos, "Utilizing optical tomography with ultrasound localization to image heterogeneous hemoglobin distribution in large breast cancers," Neoplasia 7, 263-270 (2005). [CrossRef] [PubMed]
  37. D. Piao, H. Xie, W. Zhang, J. Krasinski, G. Zhang, H. Dehghani, and B. W. Pogue, "Endoscopic, rapid near-infrared optical tomography," Opt. Lett. 31, 2876-2878 (2006). [CrossRef] [PubMed]
  38. T. J. Farrell, M. S. Patterson, and B. C. Wilson, "A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties," Med. Phys. 19, 879-888 (1992). [CrossRef] [PubMed]
  39. B. W. Pogue, M. S. Patterson, H. Jiang, and K. D. Paulsen, "Initial assessment of a simple system for frequency domain diffuse optical tomography," Phys. Med. Biol. 40, 1709-1729 (1995). [CrossRef] [PubMed]
  40. B. W. Pogue, S. Geimer, T. O. McBride, S. Jiang, U. L. ??sterberg, and K. D. Paulsen, "Three-dimensional Simulation of Near-Infrared Diffusion in Tissue: Boundary Condition and Geometry Analysis For Finite Element Image Reconstruction," Appl. Opt. 40, 588-600 (2001). [CrossRef]
  41. H. Dehghani, B. W. Pogue, J. Shudong, B. Brooksby, and K. D. Paulsen, "Three-dimensional optical tomography: resolution in small-object imaging," Appl. Opt. 42, 3117-3128 (2003). [CrossRef] [PubMed]
  42. H. Dehghani, B. W. Pogue, S. P. Poplack, and K. D. Paulsen, "Multiwavelength three-dimensional near-infrared tomography of the breast: initial simulation, phantom, and clinical results," Appl. Opt. 42, 135-145 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited