OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 12 — Jun. 9, 2008
  • pp: 8594–8603

A comparative study of living cell micromechanical properties by oscillatory optical tweezers

Ming-Tzo Wei, Angela Zaorski, Huseyin C. Yalcin, Jing Wang, Melissa Hallow, Samir N. Ghadiali, Arthur Chiou, and H. Daniel Ou-Yang  »View Author Affiliations

Optics Express, Vol. 16, Issue 12, pp. 8594-8603 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (1071 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Micromechanical properties of biological cells are crucial for cells functions. Despite extensive study by a variety of approaches, an understanding of the subject remains elusive. We conducted a comparative study of the micromechanical properties of cultured alveolar epithelial cells with an oscillatory optical tweezer-based cytorheometer. In this study, the frequency-dependent viscoelasticity of these cells was measured by optical trapping and forced oscillation of either a submicron endogenous intracellular organelle (intra-cellular) or a 1.5µm silica bead attached to the cytoskeleton through trans-membrane integrin receptors (extra-cellular). Both the storage modulus and the magnitude of the complex shear modulus followed weak power-law dependence with frequency. These data are comparable to data obtained by other measurement techniques. The exponents of power-law dependence of the data from the intra- and extra-cellular measurements are similar; however, the differences in the magnitudes of the moduli from the two measurements are statistically significant.

© 2008 Optical Society of America

OCIS Codes
(140.7010) Lasers and laser optics : Laser trapping
(170.1420) Medical optics and biotechnology : Biology
(170.1530) Medical optics and biotechnology : Cell analysis
(170.4520) Medical optics and biotechnology : Optical confinement and manipulation
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: January 3, 2008
Revised Manuscript: May 19, 2008
Manuscript Accepted: May 22, 2008
Published: May 28, 2008

Virtual Issues
Vol. 3, Iss. 7 Virtual Journal for Biomedical Optics

Ming-Tzo Wei, Angela Zaorski, Huseyin C. Yalcin, Jing Wang, Melissa Hallow, Samir N. Ghadiali, Arthur Chiou, and H. Daniel Ou-Yang, "A comparative study of living cell micromechanical properties by oscillatory optical tweezers," Opt. Express 16, 8594-8603 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. A. GimbroneJr., T. Nagel, and J. N. Topper, "Biomechanical activation: an emerging paradigm in endothelial adhesion biology," J. Clin. Invest. 99, 1809 (1997). [CrossRef]
  2. G. Goldspink, A. Scutt, P. T. Loughna, D. J. Wells, T. Jaenicke, and G. F. Gerlach, "Gene expression in skeletal muscle in response to stretch and force generation," Am. J. Physiol. 262, R356 (1992). [PubMed]
  3. D. E. Ingber, "Tensegrity: the architectural basis of cellular mechanotransduction," Annu. Rev. Physiol. 59, 575 (1997). [CrossRef] [PubMed]
  4. M. Liu, A. K. Tanswell, and M. Post, "Mechanical force-induced signal transduction in lung cells," Am. J. Physiol. 277, L667 (1999). [PubMed]
  5. H. R. Wirtz and L. G. Dobbs, "The effects of mechanical forces on lung functions," Respir. Physiol. 119, 1 (2000). [CrossRef] [PubMed]
  6. H. L. Dailey, H. C. Yalcin, and S. N. Ghadiali, "Fluid-structure modeling of flow-induced alveolar epithelial cell deformation," Comput. Struct. 85, 1066 (2007). [CrossRef]
  7. H. C. Yalcin, S. F. Perry, and S. N. Ghadiali, "Influence of airway diameter and cell confluence on epithelial cell injury in an in vitro model of airway reopening," J. Appl. Physiol. 103,1796-1807 (2007). [CrossRef] [PubMed]
  8. B. Fabry, G. N. Maksym, J. P. Butler, M. Glogauer, D. Navajas, and J. J. Fredberg, "Scaling the microrheology of living cells," Phys. Rev. Lett. 87,148102 (2001). [CrossRef] [PubMed]
  9. B. D. Hoffman, G. Massiera, K. M. Van Citters, and J. C. Crocker, "The consensus mechanics of cultured mammalian cells," Proc. Natl. Acad. Sci. USA 103, 10259 (2006). [CrossRef] [PubMed]
  10. S. Yamada, D. Wirtz, and S. C. Kuo, "Mechanics of Living Cells Measured by Laser Tracking Microrheology," Biophys. J. 78, 1736 (2000). [CrossRef] [PubMed]
  11. M. Mengistu, L. Lowe-Krentz, and H. D. Ou-Yang, "Physical Properties of the Transcytosis Machinery in Endothelial Cells," Am. Soc. Cell Biology Annual Meeting (2006).
  12. L. A. Hough, "Microrheology of Soft Materials Using Oscillating Optical Traps," Ph.D. thesis, Lehigh University (2003).
  13. L. A. Hough and H. D. Ou-Yang, "Viscoelasticity of aqueous telechelic poly(ethylene oxide) solutions: Relaxation and structure," Phys. Rev. E. 73 (2006). [CrossRef]
  14. M. T. Valentine, L. E. Dewalt, and H. D. Ou-Yang, "Forces on a colloidal particle in a polymer solution: a study using optical tweezers," J. Phys. Condens. Matter 8, 9477 (1996). [CrossRef]
  15. A. M. Bilek, K. C. Dee, and D. P. Gaver, 3rd, "Mechanisms of surface-tension-induced epithelial cell damage in a model of pulmonary airway reopening," J. Appl. Physiol. 94, 770 (2003).
  16. S. S. Kay, A. M. Bilek, K. C. Dee, and D. P. GaverIII, "Pressure gradient, not exposure duration, determines the extent of epithelial cell damage in a model of pulmonary airway reopening," J. Appl. Physiol. 97, 269 (2004). [CrossRef] [PubMed]
  17. K. M. Ridge, L. Linz, F. W. Flitney, E. R. Kuczmarski, Y.-H. Chou, M. B. Omary, J. I. Sznajder, and R. D. Goldman, "Keratin 8 Phosphorylation by Protein Kinase C {delta} Regulates Shear Stress-mediated Disassembly of Keratin Intermediate Filaments in Alveolar Epithelial Cells," J. Bio. Chem. 280, 30400 (2005). [CrossRef]
  18. D. J. Tschumperlin and S. S. Margulies, "Equibiaxial deformation-induced injury of alveolar epithelial cells in vitro," Am. J. Physiol. 275, L1173 (1998). [PubMed]
  19. D. Choquet, D. P. Felsenfeld, and M. P. Sheetz, "Extracellular matrix rigidity causes strengthening of integrin-cytoskeleton linkages," Cell 88, 39 (1997). [CrossRef] [PubMed]
  20. L. A. Hough and H. D. Ou-Yang, "Correlated motions of two hydrodynamically coupled particles confined in separate quadratic potential wells," Phys. Rev. E. 65, 021906 (2002). [CrossRef]
  21. M. T. Wei and A. Chiou, "Three-dimensional tracking of Brownian motion of a particle trapped in optical tweezers with a pair of orthogonal tracking beams and the determination of the associated optical force constants," Opt. Express 13, 5798 (2005). [CrossRef] [PubMed]
  22. M. T. Wei, K. Yang, A. Karmenyan, and A. Chiou, "Three-dimensional optical force field on a Chinese hamster ovary cell in a fiber-optical dual-beam trap," Opt. Express 14, 3056 (2006). [CrossRef] [PubMed]
  23. E. L. Florin, A. Pralle, E. H. K. Stelzer, and J. K. H. Horber, "Photonic force microscope calibration by thermal noise analysis," Appl.Phys. A-Mater. 66, S75 (1998). [CrossRef]
  24. V. M. Laurent, S. Henon, E. Planus, R. Fodil, M. Balland, D. Isabey, and F. Gallet "Assessment of mechanical properties of adherent living cells by bead micromanipulation: comparison of magnetic twisting cytometry vs. optical tweezers," J. Biomech. Eng. 124, 408 (2002). [CrossRef] [PubMed]
  25. K. A. Foster, C.G. Oster, M. M. Mayer, M. L. Avery, and K. L. Audus, "Characterization of the A549 cell line as a type II pulmonary epithelial cell model for drug metabolism," Exp. Cell Res. 243, 359 (1998). [CrossRef] [PubMed]
  26. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, "Observation of a single-beam gradient force optical trap for dielectric particles," Opt. Lett. 11, 288-290 (1986). [CrossRef] [PubMed]
  27. H. D. Ou-Yang, Polymer-Colloid Interactions: From Fundamentals to Practice (John Wiley and Sons, New York, 1999), Chap. 15.
  28. A. Rohrbach, "Stiffness of optical traps: quantitative agreement between experiment and electromagnetic theory," Phys. Rev. Lett. 95, 168102 (2005). [CrossRef] [PubMed]
  29. M. Balland, N. Desprat, D. Icard, S. Féréol, A. Asnacios, J. Browaeys, S. Hénon, and F. Gallet, "Power laws in microrheology experiments on living cells: Comparative analysis and modeling," Phys. Rev. E 74, 021911 (2006) [CrossRef]
  30. X. Trepat, M. Grabulosa, F. Puig, G.N. Maksym, D. Navajas, and R. Farre, "Viscoelasticity of human alveolar epithelial cells subjected to stretch," Am. J. Physiol. Lung Cell Mol. Physiol. (2004) July9. [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited