OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 12 — Jun. 9, 2008
  • pp: 8604–8616

A femtosecond laser pacemaker for heart muscle cells

N. I. Smith, Y. Kumamoto, S. Iwanaga, J. Ando, K. Fujita, and S. Kawata  »View Author Affiliations

Optics Express, Vol. 16, Issue 12, pp. 8604-8616 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (836 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The intracellular effects of focused near-infrared femtosecond laser irradiation are shown to cause contraction in cultured neonatal rat cardiomyocytes. By periodic exposure to femtosecond laser pulse-trains, periodic contraction cycles in cardiomyocytes could be triggered, depleted, and synchronized with the laser periodicity. This was observed in isolated cells, and in small groups of cardiomyocytes with the laser acting as pacemaker for the entire group. A window for this effect was found to occur between 15 and 30 mW average power for an 80 fs, 82 MHz pulse train of 780 nm, using 8 ms exposures applied periodically at 1 to 2 Hz. At power levels below this power window, laser-induced cardiomyocyte contraction was not observed, while above this power window, cells typically responded by a high calcium elevation and contracted without subsequent relaxation. This laser-cell interaction allows the laser irradiation to act as a pacemaker, and can be used to trigger contraction in dormant cells as well as synchronize or destabilize contraction in spontaneously contracting cardiomyocytes. By increasing laser power above the window available for laser-cell synchronization, we also demonstrate the use of cardiomyocytes as optically-triggered actuators. To our knowledge, this is the first demonstration of remote optical control of cardiomyocytes without requiring exogenous photosensitive compounds.

© 2008 Optical Society of America

OCIS Codes
(000.1430) General : Biology and medicine
(170.1020) Medical optics and biotechnology : Ablation of tissue
(170.1530) Medical optics and biotechnology : Cell analysis

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: February 26, 2008
Revised Manuscript: April 26, 2008
Manuscript Accepted: May 9, 2008
Published: May 28, 2008

Virtual Issues
Vol. 3, Iss. 7 Virtual Journal for Biomedical Optics

N. I. Smith, Y. Kumamoto, S. Iwanaga, J. Ando, K. Fujita, and S. Kawata, "A femtosecond laser pacemaker for heart muscle cells," Opt. Express 16, 8604-8616 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. M. Bers, "Cardiac excitation-contraction coupling," Nature 415, 198-205 (2002). [CrossRef] [PubMed]
  2. J. W. Bassani, R. A. Bassani, and D. M. Bers, "Relaxation in rabbit and rat cardiac cells: species-dependent differences in cellular mechanisms," J Physiol. 476, 279-293 (1994). [PubMed]
  3. Y. Tanaka, K. Sato, T. Shimizu, M. Yamato, T. Okano, and T. Kitamori, "A micro-spherical heart pump powered by cultured cardiomyocytes," Lab Chip 7, 207-12 (2007). [CrossRef] [PubMed]
  4. T. Shimizu, M. Yamato, Y. Isoi, T. Akutsu, T. Setomaru, K. Abe, A. Kikuchi, M. Umezu, and T. Okano, "Fabrication of pulsatile cardiac tissue grafts using a novel 3-dimensional cell sheet manipulation technique and temperature-responsive cell culture surfaces," Circ. Res. 90, e40 (2002). [CrossRef] [PubMed]
  5. A. W. Feinberg, A. Feigel, S. S. Shevkoplyas, S. Sheehy, G. M. Whitesides, and K. K. Parker, "Muscular thin films for building actuators and powering devices," Science 317, 1366-70 (2007). [CrossRef] [PubMed]
  6. K. Morishima, Y. Tanaka, M. Ebara, T. Shimizu, A. Kikuchi, M. Yamato, T. Okano, and T. Kitamori, "Demonstration of a bio-microactuator powered by cultured cardiomyocytes coupled to hydrogel micropillars," Sens. Actuators B 119, 345-350 (2006). [CrossRef]
  7. S. Iwanaga, N. I. Smith, K. Fujita, and S. Kawata, "Slow Ca2+ wave stimulation using low repetition rate femtosecond pulsed irradiation," Opt. Express 14, 717-725 (2006). [CrossRef] [PubMed]
  8. N. I. Smith, S. Iwanaga, T. Beppu, K. Fujita, O. Nakamura, and S. Kawata, "Photostimulation of two types of Ca2+ waves in rat pheochromocytoma PC12 cells by ultrashort pulsed near-infrared laser irradiation," Las. Phys. Lett. 3, 154-161 (2006). [CrossRef]
  9. S. Iwanaga, T. Kaneko, K. Fujita, N. I. Smith, O. Nakamura, T. Takamatsu, and S. Kawata, "Location-dependent photogeneration of calcium waves in HeLa cells," Cell Biochem. Biophys. 45, 167-76 (2006). [CrossRef] [PubMed]
  10. M. Cannell, H. Cheng, and W. Lederer, "The control of calcium release in heart muscle," Science 268, 1045-1049 (1995). [CrossRef] [PubMed]
  11. A. M. Gurney, P. Charnet, J. M. Pye, and J. Nargeot, "Augmentation of cardiac calcium current by flash photolysis of intracellular caged-Ca2+ molecules," Nature 341, 65-68 (1989). [CrossRef] [PubMed]
  12. J. R. Patel, K. S. McDonald, M. R. Wolff, and R. L. Moss, "Ca2+ binding to troponin C in skinned skeletal muscle fibers assessed with caged Ca2+ and a Ca2+ fluorophore," J. Biol. Chem. 272, 6018-6027 (1997). [CrossRef] [PubMed]
  13. E. B Brown, J. B. Shear, S. R. Adams, R. Y. Tsien, and W. W. Webb, "Photolysis of caged calcium in femtoliter volumes using two-photon excitation," Biophys. J. 76, 489-499 (1999). [CrossRef] [PubMed]
  14. R. Lubart, H. Friedmann, M. Sinyakov, N. Cohen, and H. Breitbart, "Changes in calcium transport in mammalian sperm mitochondria and plasma membranes caused by 780 nm irradiation," Laser Surg. Med. 21, 493-499 (1997). [CrossRef]
  15. A. B. Uzdensky and V. V. Savransky, "Single neuron response to pulse-periodic laser microirradiation. Action spectra and two-photon effect," J. Photochem. Photobiol. B 39, 224-228 (1997). [CrossRef]
  16. H. Hirase, V. Nikolenko, J. H. Goldbery, and R. Yuste, "Multiphoton stimulation of neurons," J. Neurobiology 51, 3, 237-247, (2002). [CrossRef]
  17. H. J. Koester, D. Baur, R. Uhl, and S. W. Hell, "Ca2+ fluorescence imaging with pico- and femtosecond two-photon excitation: signal and photodamage," Biophys. J. 77, 2226-2236 (1999). [CrossRef] [PubMed]
  18. K. Shapira-Schweitzer and D. Seliktar, "Matrix stiffness affects spontaneous contraction of cardiomyocytes cultured within a PEGylated fibrinogen biomaterial," Acta Biomater. 3, 33-41 (2007). [CrossRef]
  19. T. Kaneko, K. Kojima, and K. Yasuda, "Dependence of the community effect of cultured cardiomyocytes on the cell network pattern," Biochem. Biophys. Res. Commun. 356, 494-498 (2007). [CrossRef] [PubMed]
  20. R. Vetter, K. Monika, S. Wolfgang, and H. Rupp, "Influence of different culture conditions on sarcoplasmic reticular calcium transport in isolated neonatal rat cardiomyocytes," Mol. Cell. Biochem. 188, 177-185 (1998). [CrossRef] [PubMed]
  21. A. Vogel, and V. Venugopalan, "Mechanisms of Pulsed Laser Ablation of Biological Tissues," Chem. Rev. 103, 577-644 (2003). [CrossRef] [PubMed]
  22. U. K. Tirlapur, K. Konig, C. Peuckert, R. Krieg, and K. Halbhuber, "Femtosecond near-infrared laser pulses elicit generation of reactive oxygen species in mammalian cells leading to apoptosis-like death," Exp. Cell Res. 263, 88-97 (2001). [CrossRef]
  23. W. T. Clusin, "Mechanisms of calcium transient and action potential alternans in cardiac cells and tissues," Am. J. Physiol. Heart Circ. Physiol. 294, H1-H10 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (11527 KB)     
» Media 2: MOV (2270 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited