OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 12 — Jun. 9, 2008
  • pp: 8623–8628

Birefringence and optical power confinement in horizontal multi-slot waveguides made of Si and SiO2

Han G. Yoo, Yijing Fu, Daniel Riley, Jung H. Shin, and Philippe M. Fauchet  »View Author Affiliations

Optics Express, Vol. 16, Issue 12, pp. 8623-8628 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (440 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Through simulations and measurements, we show that in multi-slot thin film waveguides, the TM polarized modes can be confined mostly in the low refractive index layers of the waveguide. The structure consisted of alternating layers of a-Si and SiO2, in the thickness range between 3 and 40 nm, for which the slots were the SiO2 layers. Simulations were performed using the transfer matrix method and experiments using the m-line technique at 1.55 µm. The dependence of the birefringence and of the power confinement in the slots was studied as a function of the waveguide thickness, the Si and SiO2 layer thicknesses, and the SiO2/Si layer thickness ratio. We find a large birefringence—a refractive index difference between TE and TM modes—as large as 0.8. For TM polarized modes, up to ~85% of the total power in the fundamental mode can be confined in the slots.

© 2008 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(130.3120) Integrated optics : Integrated optics devices
(230.7390) Optical devices : Waveguides, planar
(230.7400) Optical devices : Waveguides, slab

ToC Category:
Integrated Optics

Original Manuscript: March 19, 2008
Revised Manuscript: May 19, 2008
Manuscript Accepted: May 20, 2008
Published: May 28, 2008

Han G. Yoo, Yijing Fu, Daniel Riley, Jung H. Shin, and Philippe M. Fauchet, "Birefringence and optical power confinement in horizontal multi-slot waveguides made of Si and SiO2," Opt. Express 16, 8623-8628 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. G. Kik, M. L. Brongersma, and A. Polman, "Strong exciton-erbium coupling in Si nanocrystal-doped SiO2," Appl. Phys. Lett. 76, 2325-2327 (2000). [CrossRef]
  2. X. W. Zhao, S. Komuro, H. Isshiki, Y. Aoyagi, and T. Sugano, "Fabrication and stimulated emission of Er-doped nanocrystalline Si waveguides formed on Si substrates by laser ablation," Appl. Phys. Lett. 74, 120-122 (1999). [CrossRef]
  3. V. Y. Timoshenko, M. G. Lisachenko, B. V. Kamenev, O. A. Shalygina, P. K. Kashkarov, J. Heitmann, M. Schmidt, and M. Zacharias, "Highly efficient sensitizing of erbium ion luminescence in size-controlled nanocrystalline Si/SiO2 superlattice structures," Appl. Phys. Lett. 84, 2512-2514 (2004). [CrossRef]
  4. J. H. Shin, W.-H. Lee, and H.-S. Han, "1.54 ??m Er3+ photoluminescent properties of erbium-doped Si/SiO2 superlattices," Appl. Phys. Lett. 74, 1573-1575 (1999). [CrossRef]
  5. J. Lee, J. H. Shin, and N. Park, "Optical gain at 1.5 ??m in nanocrystal Si-sensitized Er-doped silica waveguide using top-pumping 470 nm LEDs," J. Lightwave Technol. 23, 19-25 (2005). [CrossRef]
  6. L. Dal Negro, J. H. Yi, J. Michel, L. C. Kimerling, S. Hamel, A. Williamson, and G. Galli, "Light-emitting silicon nanocrystals and photonic structures in silicon nitride," IEEE J. Quantum Electron. 12, 1628-1635 (2006). [CrossRef]
  7. D. Navarro-Urrios, M. Melchiorri, N. Daldosso, L. Pavesi, C. Garcia, P. Pellegrino, B. Garrido, G. Pucker, F. Gourbilleau, and R. Rizk, "Optical losses and gain in silicon-rich silica waveguides containing Er ions," J. Appl. Phys. 91, 534-536 (2002).
  8. P. G. Kik and A. Polman, "Gain limiting processes in Er-doped Si nanocrystal waveguides in SiO2," J. Lumin. 121, 249-255 (2006). [CrossRef]
  9. A. Fiore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, "Phasematching using an isotropic nonlinear opticalmaterial," Nature (London) 391, 463-466 (1998). [CrossRef]
  10. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, "Guiding and confining light in void nanostructure," Opt. Lett. 29, 1209-1211 (2004). [CrossRef] [PubMed]
  11. P. A. Anderson, B. S. Schmidt, and M. Lipson, "High confinement in silicon slot waveguides with sharp bends," Opt. Express 14, 9197-9201 (2006). [CrossRef] [PubMed]
  12. N. Feng, J. Michel, and L. C. Kimerling, "Optical field concentration in low-index waveguides," IEEE J. Quantum Electron. 42, 885-890 (2006). [CrossRef]
  13. R. Sun, P. Dong, N. Feng, C. Hong, J. Michel, M. Lipson, and L. Kimerling, "Horizontal single and multiple slot waveguides: optical transmission at ?? = 1550 nm," Opt. Express 15, 17967-17972 (2007). [CrossRef] [PubMed]
  14. M. Galli, D. Gerace, A. Politi, M. Liscidini, M. Patrini, L. C. Andreani, A. Canino, M. Miritello, R. Lo Savio, A. Irrera, and F. Priolo, "Direct evidence of light confinement and emission enhancement in active silicon-oninsulator slot waveguides," Appl. Phys. Lett. 89, 241114 (2006). [CrossRef]
  15. Q. Xu, V. R. Almeida, R. R. Panepucci, and M. Lipson, "Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material," Opt. Lett. 29, 1626-1628 (2004). [CrossRef] [PubMed]
  16. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1998).
  17. L. Tsybeskov, K. D. Hirschman, S. P. Duttagupta, M. Zacharias, P. M. Fauchet, J. P. McCaffrey, and D. J. Lockwood, "Nanocrystalline-silicon superlattice produced by controlled recrystallization," Appl. Phys. Lett. 72, 43-45 (1998). [CrossRef]
  18. G. F. Grom, D. J. Lockwood, J. P. McCaffrey, H. J. Labbe, P. M. Fauchet, B. White, Jr, J. Diener, D. Kovalev, F. Koch, and L. Tsybeskov, "Ordering and self-organization in nanocrystalline silicon," Nature (London) 407, 358-361 (2000). [CrossRef] [PubMed]
  19. J. Chilwell and I. Hodgkinson, "Thin-films field-transfer matrix theory of planar multilayer waveguides and reflection from prism-loaded waveguides," J. Opt. Soc. Am. A 1, 742-753 (1984). [CrossRef]
  20. K. Ohta and H. Ishida, "Matrix formalism for calculation of electric field intensity of light in stratified multilayered films," Appl. Opt. 29, 1952-1959 (1990). [CrossRef] [PubMed]
  21. R. Ulrich and R. Torge, "Measurement of thin film parameters with a prism coupler," Appl. Opt. 12, 2901-2908 (1973). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited