OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 12 — Jun. 9, 2008
  • pp: 8685–8703

Measurement of internal tissue optical properties at ultraviolet and visible wavelengths: Development and implementation of a fiberoptic-based system

Quanzeng Wang, Huizhong Yang, Anant Agrawal, Nam Sun Wang, and T. Joshua Pfefer  »View Author Affiliations


Optics Express, Vol. 16, Issue 12, pp. 8685-8703 (2008)
http://dx.doi.org/10.1364/OE.16.008685


View Full Text Article

Enhanced HTML    Acrobat PDF (697 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A novel, multi-wavelength, fiberoptic system was constructed, evaluated and implemented to determine internal tissue optical properties at ultraviolet A (UVA) and visible (VIS) wavelengths. Inverse modeling was performed with a neural network to estimate absorption and reduced scattering coefficients based on spatially-resolved reflectance distributions. The model was calibrated with simulated reflectance datasets generated using a condensed Monte Carlo approach with absorption coefficients up to 85 cm-1 and reduced scattering coefficients up to 118 cm-1. After theoretical and experimental evaluations of the system, optical properties of porcine bladder, colon, esophagus, oral mucosa, and liver were measured at 325, 375, 405, 445 and 532 nm. These data provide evidence that as wavelengths decrease into the UVA, the dominant tissue chromophore shifts from hemoglobin to structural proteins such as collagen. This system provides a high level of accuracy over a wide range of optical properties, and should be particularly useful for in situ characterization of highly attenuating biological tissues in the UVA-VIS.

© 2008 Optical Society of America

OCIS Codes
(120.3890) Instrumentation, measurement, and metrology : Medical optics instrumentation
(120.4630) Instrumentation, measurement, and metrology : Optical inspection
(170.3890) Medical optics and biotechnology : Medical optics instrumentation
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics
(300.1030) Spectroscopy : Absorption
(300.6540) Spectroscopy : Spectroscopy, ultraviolet

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: March 4, 2008
Revised Manuscript: April 15, 2008
Manuscript Accepted: May 20, 2008
Published: May 29, 2008

Virtual Issues
Vol. 3, Iss. 7 Virtual Journal for Biomedical Optics

Citation
Quanzeng Wang, Huizhong Yang, Anant Agrawal, Nam Sun Wang, and T. Joshua Pfefer, "Measurement of internal tissue optical properties at ultraviolet and visible wavelengths: Development and implementation of a fiberoptic-based system," Opt. Express 16, 8685-8703 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-12-8685


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Jemal, R. Siegel, E. Ward, T. Murray, J. Q. Xu, and M. J. Thun, "Cancer statistics, 2007," CA-Cancer J. Clin. 57, 43-66 (2007). [CrossRef]
  2. T. Collier, D. Arifler, A. Malpica, M. Follen, and R. Richards-Kortum, "Determination of epithelial tissue scattering coefficient using confocal microscopy," IEEE J. Sel. Top. Quantum Electron. 9, 307-313 (2003). [CrossRef]
  3. A. Amelink, H. Sterenborg, M. P. L. Bard, and S. A. Burgers, "In vivo measurement of the local optical properties of tissue by use of differential path-length spectroscopy," Opt. Lett. 29, 1087-1089 (2004). [CrossRef] [PubMed]
  4. T. P. Moffitt and S. A. Prahl, "Sized-fiber reflectometry for measuring local optical properties," IEEE J. Sel. Top. Quantum Electron. 7, 952-958 (2001). [CrossRef]
  5. J. Sun, K. Fu, A. Wang, A. W. H. Lin, U. Utzinger, and R. Drezek, "Influence of fiber optic probe geometry on the applicability of inverse models of tissue reflectance spectroscopy: computational models and experimental measurements," Appl. Opt. 45, 8152-8162 (2006). [CrossRef] [PubMed]
  6. P. Thueler, I. Charvet, F. Bevilacqua, M. St Ghislain, G. Ory, P. Marquet, P. Meda, B. Vermeulen, and C. Depeursinge, "In vivo endoscopic tissue diagnostics based on spectroscopic absorption, scattering, and phase function properties," J. Biomed. Opt. 8, 495-503 (2003). [CrossRef] [PubMed]
  7. G. M. Palmer and N. Ramanujam, "Use of genetic algorithms to optimize fiber optic probe design for the extraction of tissue optical properties," IEEE Trans. Biomed. Eng. 54, 1533-1535 (2007). [CrossRef] [PubMed]
  8. T. J. Pfefer, L. S. Matchette, C. L. Bennett, J. A. Gall, J. N. Wilke, A. J. Durkin, and M. N. Ediger, "Reflectance-based determination of optical properties in highly attenuating tissue," J. Biomed. Opt. 8, 206-215 (2003). [CrossRef] [PubMed]
  9. D. Sharma, A. Agrawal, L. S. Matchette, and T. J. Pfefer, "Evaluation of a fiberoptic-based system for measurement of optical properties in highly attenuating turbid media," Biomed. Eng. Online 5, 49 (2006). [CrossRef] [PubMed]
  10. A. Kienle, L. Lilge, M. S. Patterson, R. Hibst, R. Steiner, and B. C. Wilson, "Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue," Appl. Opt. 35, 2304-2314 (1996). [CrossRef] [PubMed]
  11. H.-J. Wei, D. Xing, J.-J. Lu, H.-M. Gu, G.-Y. Wu, and Y. Jin, "Determination of optical properties of normal and adenomatous human colon tissues in vitro using integrating sphere techniques," World J. Gastroenterol. 11, 2413-2419 (2005). [PubMed]
  12. J. S. Dam, C. B. Pedersen, T. Dalgaard, P. E. Fabricius, P. Aruna, and S. Andersson-Engels, "Fiber-optic probe for noninvasive real-time determination of tissue optical properties at multiple wavelengths," Appl. Opt. 40, 1155-1164 (2001). [CrossRef]
  13. P. R. Bargo, S. A. Prahl, T. T. Goodell, R. A. Sleven, G. Koval, G. Blair, and S. L. Jacques, "In vivo determination of optical properties of normal and tumor tissue with white light reflectance and an empirical light transport model during endoscopy," J. Biomed. Opt. 10, 034018 (2005). [CrossRef] [PubMed]
  14. S. R. Millon, K. M. Roldan-Perez, K. M. Riching, G. M. Palmer, and N. Ramanujam, "Effect of optical clearing agents on the in vivo optical properties of squamous epithelial tissue," Lasers Surg. Med. 38, 920-927 (2006). [CrossRef] [PubMed]
  15. M. J. C. v. Gemert, A. J. Welch, and W. M. Star, eds., One-dimensional Transport Theory (Plenum Press, New York and London, 1995).
  16. S. A. Prahl, "The diffusion approximation in three dimensions," in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch, and M. J. C. v. Gemert, eds., (Plenum Press, New York and London, 1995), pp. 207-231.
  17. L. Reynolds, C. Johnson, and A. Ishimaru, "Diffuse reflectance from a finite blood medium - applications to modeling of fiber optic catheters," Appl. Opt. 15, 2059-2067 (1976). [CrossRef] [PubMed]
  18. B. C. Wilson and G. Adam, "A Monte-Carlo model for the absorption and flux distributions of light in tissue," Med. Phys. 10, 824-830 (1983). [CrossRef] [PubMed]
  19. M. Keijzer, S. L. Jacques, S. A. Prahl, and A. J. Welch, "Light distributions in artery tissue - Monte-Carlo simulations for finite-diameter laser-beams," Lasers Surg. Med. 9, 148-154 (1989). [CrossRef] [PubMed]
  20. M. Keijzer, J. W. Pickering, and M. J. C. van Gemert, "Laser-beam diameter for Port wine stain treatment," Lasers Surg. Med. 11, 601-605 (1991). [CrossRef] [PubMed]
  21. S. T. Flock, M. S. Patterson, B. C. Wilson, and D. R. Wyman, "Monte-Carlo modeling of light-propagation in highly scattering tissues. 1. Model predictions and comparison with diffusion-theory," IEEE Trans. Biomed. Eng. 36, 1162-1168 (1989). [CrossRef] [PubMed]
  22. S. T. Flock, B. C. Wilson, and M. S. Patterson, "Monte-Carlo modeling of light-propagation in highly scattering tissues. 2. Comparison with measurements in phantoms," IEEE Trans. Biomed. Eng. 36, 1169-1173 (1989). [CrossRef] [PubMed]
  23. L. H. Wang, S. L. Jacques, and L. Q. Zheng, "MCML - Monte Carlo modeling of light transport in multi-layered tissues," Comput. Methods Programs Biomed. 47, 131-146 (1995). [CrossRef] [PubMed]
  24. S. L. Jacques, and L. Wang, "Monte Carlo modeling of light transport in tissues," in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch, and M. J. C. v. Gemert, eds., (Plenum Press, New York and London, 1995), pp. 73-100.
  25. Q. Liu and N. Ramanujam, "Scaling method for fast Monte Carlo simulation of diffuse reflectance spectra from multilayered turbid media," J. Opt. Soc. Am. A 24, 1011-1025 (2007). [CrossRef] [PubMed]
  26. R. Graaff, M. H. Koelink, F. F. M. Demul, W. G. Zijlstra, A. C. M. Dassel, and J. G. Aarnoudse, "Condensed Monte-Carlo simulations for the description of light transport," Appl. Opt. 32, 426-434 (1993). [CrossRef] [PubMed]
  27. G. M. Palmer and N. Ramanujam, "Monte Carlo-based inverse model for calculating tissue optical properties. Part I: Theory and validation on synthetic phantoms," Appl. Opt. 45, 1062-1071 (2006). [CrossRef] [PubMed]
  28. T. J. Farrell, B. C. Wilson, and M. S. Patterson, "The use of a neural network to determine tissue optical-properties from spatially resolved diffuse reflectance measurements," Phys. Med. Biol. 37, 2281-2286 (1992). [CrossRef] [PubMed]
  29. Q. Liu, C. F. Zhu, and N. Ramanujam, "Experimental validation of Monte Carlo modeling of fluorescence in tissues in the UV-visible spectrum," J. Biomed. Opt. 8, 223-236 (2003). [CrossRef] [PubMed]
  30. G. M. Palmer, C. L. Marshek, K. M. Vrotsos, and N. Ramanujam, "Optimal methods for fluorescence and diffuse reflectance measurements of tissue biopsy samples," Lasers Surg. Med. 30, 191-200 (2002). [CrossRef] [PubMed]
  31. J. R. Mourant, I. J. Bigio, D. A. Jack, T. M. Johnson, and H. D. Miller, "Measuring absorption coefficients in small volumes of highly scattering media: Source-detector separations for which path lengths do not depend on scattering properties," Appl. Opt. 36, 5655-5661 (1997). [CrossRef] [PubMed]
  32. R. Marchesini, E. Pignoli, S. Tomatis, S. Fumagalli, A. E. Sichirollo, S. Dipalma, M. Dalfante, P. Spinelli, A. C. Croce, and G. Bottiroli, "Ex-vivo optical-properties of human colon tissue," Lasers Surg. Med. 15, 351-357 (1994). [CrossRef] [PubMed]
  33. C. Holmer, K. S. Lehmann, J. Wanken, C. Reissfelder, A. Roggan, G. Mueller, H. J. Buhr, and J. P. Ritz, "Optical properties of adenocarcinoma and squamous cell carcinoma of the gastroesophageal junction," J. Biomed. Opt. 12, 014025 (2007). [CrossRef] [PubMed]
  34. G. I. Zonios, R. M. Cothren, J. T. Arendt, J. Wu, J. VanDam, J. M. Crawford, R. Manoharan, and M. S. Feld, "Morphological model of human colon tissue fluorescence," IEEE Trans. Biomed. Eng. 43, 113-122 (1996). [CrossRef] [PubMed]
  35. R. L. P. van Veen, W. Verkruysse, and H. Sterenborg, "Diffuse-reflectance spectroscopy from 500 to 1060 nm by correction for inhomogeneously distributed absorbers," Opt. Lett. 27, 246-248 (2002). [CrossRef]
  36. D. Hidovic-Rowe and E. Claridge, "Modelling and validation of spectral reflectance for the colon," Phys. Med. Biol. 50, 1071-1093 (2005). [CrossRef] [PubMed]
  37. W. J. Cui and L. E. Ostrander, "The Relationship of Surface Reflectance Measurements to Optical-Properties of Layered Biological Media," IEEE Trans. Biomed. Eng. 39, 194-201 (1992). [CrossRef] [PubMed]
  38. Q. Liu and N. Ramanujam, "Sequential estimation of optical properties of a two-layered epithelial tissue model from depth-resolved ultraviolet-visible diffuse reflectance spectra," Appl. Opt. 45, 4776-4790 (2006). [CrossRef] [PubMed]
  39. I. Seo, J. S. You, C. K. Hayakawa, and V. Venugopalan, "Perturbation and differential Monte Carlo methods for measurement of optical properties in a layered epithelial tissue model," J. Biomed. Opt. 12, 014030 (2007). [CrossRef] [PubMed]
  40. I. Georgakoudi, B. C. Jacobson, J. Van Dam, V. Backman, M. B. Wallace, M. G. Muller, Q. Zhang, K. Badizadegan, D. Sun, G. A. Thomas, L. T. Perelman, and M. S. Feld, "Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett's esophagus," Gastroenterology 120, 1620-1629 (2001). [CrossRef] [PubMed]
  41. J. P. Ritz, A. Roggan, C. Isbert, G. Muller, H. J. Buhr, and C. T. Germer, "Optical properties of native and coagulated porcine liver tissue between 400 and 2400 nm," Lasers Surg. Med. 29, 205-212 (2001). [CrossRef] [PubMed]
  42. P. Parsa, S. L. Jacques, and N. S. Nishioka, "Optical-properties of rat-liver between 350 and 2200 nm," Appl. Opt. 28, 2325-2330 (1989). [CrossRef] [PubMed]
  43. V. Tuchin, Tissue Optics (The International Society for Optical Engineering, Bellingham, Washington USA, 2000).
  44. A. A. Oraevsky, S. L. Jacques, G. H. Pettit, I. S. Saidi, F. K. Tittel, and P. D. Henry, "XeCl Laser Ablation of Atherosclerotic Aorta - Optical-Properties and Energy Pathways," Lasers Surg. Med. 12, 585-597 (1992). [CrossRef] [PubMed]
  45. M. Keijzer, R. R. Richards-Kortum, S. L. Jacques, and M. S. Feld, "Fluorescence Spectroscopy of Turbid Media - Autofluorescence of the Human Aorta," Appl. Opt. 28, 4286-4292 (1989). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited