OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 12 — Jun. 9, 2008
  • pp: 8727–8741

UV-induced modification of stress distribution in optical fibers and its contribution to Bragg grating birefringence

N. Belhadj, Y. Park, S. LaRochelle, K. Dossou, and J. Azaña  »View Author Affiliations


Optics Express, Vol. 16, Issue 12, pp. 8727-8741 (2008)
http://dx.doi.org/10.1364/OE.16.008727


View Full Text Article

Enhanced HTML    Acrobat PDF (766 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This paper discusses the importance of stress-induced contributions to the photo-induced birefringence observed in fiber Bragg gratings. Optical tomography measurements are performed in exposed and unexposed fibers to extract the stress profiles induced by UV-writing of fiber Bragg gratings for various exposure levels. A photoelastic analysis and a high-order isoparametric finite elements method are then used to calculate the birefringence caused by stress profile modifications. The results are compared to the birefringence directly measured by spectral analysis of a chirped fiber grating with multiple phase-shifts. We can therefore estimate the fraction of the photo-induced birefringence due to stress-induced anisotropy following UV exposure.

© 2008 Optical Society of America

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.2300) Fiber optics and optical communications : Fiber measurements
(060.2340) Fiber optics and optical communications : Fiber optics components
(060.2430) Fiber optics and optical communications : Fibers, single-mode
(060.3738) Fiber optics and optical communications : Fiber Bragg gratings, photosensitivity

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: April 11, 2008
Revised Manuscript: May 26, 2008
Manuscript Accepted: May 26, 2008
Published: May 29, 2008

Citation
N. Belhadj, Y. Park, S. LaRochelle, K. Dossou, and J. Azaña, "UV-induced modification of stress distribution in optical fibers and its contribution to Bragg grating birefringence," Opt. Express 16, 8727-8741 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-12-8727


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Erdogan and V. Mizrahi, "Characterization of UV-induced birefringence in photosensitive Ge-doped silica optical fibers," J. Opt. Soc. Am. B 11, 2100-2105 (1994). [CrossRef]
  2. A. M. Vengsarkar, Q. Zhong, D. Inniss, W. A. Reed, P. J. Lemaire, and S. G. Kosinski, "Birefringence reduction in side-written photoinduced fiber devices by a dual-exposure method," Opt. Lett. 19, 1260-1262 (1994). [CrossRef] [PubMed]
  3. D. Inniss, Q. Zhong, A. M. Vengsarkar, W. A. Reed, S. G. Kosinski, and P. J. Lemaire, "Atomic force microscopy study of UV-induced anisotropy in hydrogen-loaded germanosilicate fibers," Appl. Phys. Lett. 65, 1528-1530, (1994). [CrossRef]
  4. H. Renner, "Effective-index increase, form birefringence and transition losses in UV-side-illuminated photosensitive fibers," Opt. Express 9, 546-560 (2001). [CrossRef] [PubMed]
  5. N. Belhadj, K. Dossou, X. Daxhelet, S. LaRochelle, S. Lacroix, and M. Fontaine, "A comparative study of numerical methods for the calculation of the birefringence of UV-illuminated fibers," OSA Technical Digest: Conference on Bragg Gratings, Photosensitivity and Poling in Glass Waveguides, Monterey, California, USA, September 1-3, (paper MD20) 112-114 (2003).
  6. N. Belhadj, S. LaRochelle, and K. Dossou, "Form birefringence in UV-exposed photosensitive fibers computed using a higher order finite element method," Opt. Express 12, 1720-1726 (2004). [CrossRef] [PubMed]
  7. N. Belhadj, S. LaRochelle, and K. Dossou, "Analysis of birefringence and eigen-axes orientation resulting from the interplay between initial and form birefringence in UV-illuminated fibre," IEEE-LEOS Annual Meeting 2006, Montreal, Canada, October 29- November 2, Paper TuX 2, (2006).
  8. K. Dossou, S. LaRochelle, and M. Fontaine, "Numerical Analysis of the Contribution of the transverse asymmetry in the photo-induced index change profile to the birefringence of optical fiber," J. Lightwave Technol. 20, 1463-1469 (2002). [CrossRef]
  9. J. Canning, H. J. Deyerl, H. R. Sorensen, and M. Kristensen, "Ultraviolet-induced birefringence in hydrogenloaded optical fiber," J. Appl. Phys. 97, 53104, (2005). [CrossRef]
  10. M. Douay, W. X. Xie, T. Taunay, P. Bernage, P. Niay, P. Cordier, B. Poumellec, L. Dong, J. F. Bayon, H. Poignant, and E. Delevaque, "Densification involved in the UV-based photosensitivity of silica glasses and optical fibers," J. Lightwave Technol. 15, 1329-1342 (1997). [CrossRef]
  11. P. St.-J. Russell, P. and D. P. Hand, "Rocking filter formation in photosensitive high birefringence optical fibres," Electron. Lett. 26, 1846-1848, (1990). [CrossRef]
  12. P. Y. Fonjallaz, H. G. Limberger, R. P. Salathe, F. Cochet, and B. Leuenberger, "Tension increase correlated to refractive-index change in fibers containing UV-written Bragg gratings," Opt. Lett. 20, 1346-1348 (1995). [CrossRef] [PubMed]
  13. F. Dürr, H. G. Limberger, R. P. Salathé, F. Hindle, M. Douay, E. Fertein, and C. Przygodzki, "Tomographic measurement of femtosecond-laser induced stress changes in optical fibers," Appl. Phys. Lett. 84, 4983-4985, (2004). [CrossRef]
  14. H. G. Limberger, C. Ban, R. P. Salathé, S. A Slattery, and D. N. Nokogosyan, "Absence of UV-induced stress in Bragg gratings recorded by high-intensity 264 nm laser pulses in a hydrogenated standard telecom fiber," Opt. Express 15, 5610-5615 (2007). [CrossRef] [PubMed]
  15. H. Renner, "Impact of UV-induced mode-field deformation on residual stress birefringence in single mode fibers," Opt. Commun. 244, 131-135 (2005). [CrossRef]
  16. K. Dossou and M. Fontaine, "A high order isoparametric finite element method for the computation of wave guide modes," Comput. Methods Appl. Mech. Eng. 194, 837-858 (2005). [CrossRef]
  17. Y. Park, T. -J Ahn, Y. H. Kim, W. T. Han, U. -C. Paek, and D. Y. Kim, "Measurement method for profiling the residual stress and the strain-optic coefficient of an optical fiber," App. Opt. 41, 21-26 (2002). [CrossRef]
  18. Y. Park, S. Choi, U. -C. Peak, K. Oh, and D. Y. Kim, "Measurement method for profiling the residual stress of an optical fiber: detailed analysis of off-focusing and beam-deflection effects," App. Opt. 42, 1182-1190 (2003). [CrossRef]
  19. L. Dong, G. Qi, M. Marro, V. Bhatia, L. L. Hepburn, M. Swan, A. Collier, and D. L. Weidman, "Suppression of Cladding Mode Coupling Loss in Fiber Bragg Gratings," J. Lightwave Technol. 18, 1583-1590 (2000). [CrossRef]
  20. A. E. Puro and K.-J. E. Kell, "Complete determination of stress in fiber preforms of arbitrary cross section," J. Lightwave Technol. 10, 1010-1014 (1992). [CrossRef]
  21. J. Sakai and T. Kimura, "Birefringence caused by thermal stress in elliptically deformed core optical fibers," IEEE J. Quantum Electron. 18, 1899-1909 (1982). [CrossRef]
  22. G. Brochu and S. LaRochelle, "Fabrication of erbium-ytterbium distributed multi-wavelength fiber lasers by writing the superstructured fiber Bragg grating resonator in a single writing laser scan," Proc. SPIE 6796, 1-11 (2007).
  23. Y. Park, U.-C. Paek, and D. Y. Kim, "Complete determination of the stress tensor of a polarizationmaintaining fiber by photoelastic tomography," Opt. Lett. 27, 1217-1219 (2002). [CrossRef]
  24. Y. Park, U.-C. Paek, and D. Y. Kim, "Determination of stress-induced intrinsic birefringence in a singlemode fiber by measurement of the two-dimensional stress profile," Opt. Lett. 27, 1291-1293 (2002). [CrossRef]
  25. T. Abe, Y. Mitsunaga, and H. Koga, "Photoelastic computer tomography: a novel measurement method for axial residual stress profile in optical fibers," J. Opt. Soc. Am. A 3, 133 (1986). [CrossRef]
  26. A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (Society for Industrial and Applied Mathematics, Philadelphia, Pa., 2001), Chap. 3.
  27. Y. Park, U.-C. Paek and D. Y. Kim, "Characterization of a Stress-Applied Polarization-Maintaining (PM) Fiber Through Photoelastic Tomography," J. Lightwave Technol.  21, 997- (2003). [CrossRef]
  28. U.-C. Paek and C. R. Kurkjian, "Calculation of Cooling Rate and Induced Stresses in Drawing of Optical Fibers," J. Am. Ceram. Soc. 58, 330-335 (1975). [CrossRef]
  29. S. Timoshenko and J. N. Goodier, Theory of Elasticity, 3rd ed. (New York, McGraw-Hill, 1970).
  30. H. Aben and C. Guillemet, Photoelasticity of Glass, (Berlin, Germany, Springer-Verlag, 1993).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited