OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 12 — Jun. 9, 2008
  • pp: 8742–8747

Polarized thermal radiation by layer-by-layer metallic emitters with sub-wavelength grating

Jae-Hwang Lee, Wai Leung, Tae Guen Kim, Kristen Constant, and Kai-Ming Ho  »View Author Affiliations

Optics Express, Vol. 16, Issue 12, pp. 8742-8747 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (1202 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Metallic thermal emitters consisting of two layers of differently structured nickel gratings on a homogeneous nickel layer are fabricated by soft lithography and studied for polarized thermal radiation. A thermal emitter in combination with a sub-wavelength grating shows a high extinction ratio, with a maximum value close to 5, in a wide mid-infrared range from 3.2 to 7.8 µm, as well as high emissivity up to 0.65 at a wavelength of 3.7µm. All measurements show good agreement with theoretical predictions. Numerical simulations reveal that a high electric field exists within the localized air space surrounded by the gratings and the intensified electric-field is only observed for the polarizations perpendicular to the top sub-wavelength grating. This result suggests how the emissivity of a metal can be selectively enhanced at a certain range of wavelengths for a given polarization.

© 2008 Optical Society of America

OCIS Codes
(030.5620) Coherence and statistical optics : Radiative transfer
(230.5440) Optical devices : Polarization-selective devices
(230.5298) Optical devices : Photonic crystals

ToC Category:
Optical Devices

Original Manuscript: January 3, 2008
Revised Manuscript: April 26, 2008
Manuscript Accepted: April 28, 2008
Published: May 30, 2008

Jae-Hwang Lee, Wai Leung, Tae Guen Kim, Kristen Constant, and Kai-Ming Ho, "Polarized thermal radiation by layer-by-layer metallic emitters with sub-wavelength grating," Opt. Express 16, 8742-8747 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Heinzel, V. Boerner, A. Gombert, B. Bläsi, V. Wittwer, and J. Luther, "Radiation filters and emitters for the NIR based on periodically structured metal surfaces," J. Mod. Opt. 47, 2399-2419 (2000).
  2. M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, "Photonic crystal enhanced narrow-band infrared emitters," Appl. Phys. Lett. 81, 4585-4587 (2002). [CrossRef]
  3. S. Y. Lin, J. Moreno, and J. G. Fleming, "Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation," Appl. Phys. Lett. 83, 380-382 (2003). [CrossRef]
  4. H. Sai, Y. Kanamori, and H. Yugami, "High-temperature resistive surface grating for spectral control of thermal radiation," Appl. Phys. Lett. 82, 1685-1687 (2003). [CrossRef]
  5. J.-H. Lee, Y.-S. Kim, K. Constant, and K.-M. Ho, "Woodpile metallic photonic crystals fabricated by using soft lithography for tailored thermal emission," Adv. Mater. 19, 791-794 (2007). [CrossRef]
  6. P. J. Hesketh, J. N. Zemel, and B. Gebhart, "Polarized spectral emittance from periodic micromachined surface. I. Doped silicon: The normal direction," Phys. Rev. B 37, 10795-10802 (1988). [CrossRef]
  7. Q1. F. Marquier, M. Laroche, R. Carminati, J.-J. Greffet, "Anisotropic polarized emission of a doped silicon lamellar grating," J. Heat Trans. 129, 11 (2007). [CrossRef]
  8. J. C. W. Lee and C. T. Chan, "Circularly polarized thermal radiation from layer-by-layer photonic crystal structures," Appl. Phys. Lett. 90, 051912 (2007). [CrossRef]
  9. S. Ingvarsson, L. J. Klein, Y.-Y. Au, J. A. Lacey, and H. F. Hamann, "Enhanced thermal emission from individual antenna-like nanoheaters," Opt. Express 15, 11249 (2007). [CrossRef] [PubMed]
  10. T. Saito, L. R. Hughey, J. E. Proctor, and T. R. O???Brian, "Polarization characteristics of silicon photodiodes and their dependence on oxide thickness," Rev. Sci. Instrum. 67, 3362 (1996). [CrossRef]
  11. N. P. Camacho, P. West, P. A. Torzilli, and R. Mendelsohn, "FTIR microscopic imaging of collagen and proteoglycan in bovine cartilage," Biopolymers 62, 1-8 (2001). [CrossRef] [PubMed]
  12. H. Arimoto, "Multispectral polarization imaging for observing blood oxygen saturation in skin tissue," Appl. Spectrosc. 60, 459-464 (2006). [CrossRef] [PubMed]
  13. E.W. Thulstrup and J. Michl, Elementary Polarization Spectroscopy (VCH, New York, 1989), Chap. 3.
  14. A. G. Worthing, "Deviation from Lambert???s law and polarization of light emitted by incandescent tungsten, tantalum and molybdenum and changes in the optical constants of tungsten with temperature," J. Opt. Soc. Am. 13, 635-650 (1926). [CrossRef]
  15. O. Sandus, "A review of emission polarization," Appl. Opt. 4, 1634-1642 (1965). [CrossRef]
  16. J.-H. Lee, J.C.W. Lee, W. Leung, M. Li, K. Constant, C. T. Chan, and K.-M. Ho, "Polarization engineering of thermal radiation using metallic photonic crystals," Adv. Mater. (to be published). [PubMed]
  17. J.-H. Lee, C.-H. Kim, K. Constant, and K.-M. Ho, "Two-polymer microtransfer molding for highly layered microstructures," Adv. Mater. 17, 2481-2485 (2005). [CrossRef]
  18. J. B. Pendry, "Photonic band structures," J. Mod. Opt. 41, 209-229 (1994). [CrossRef]
  19. Z.-Y. Li and L.-L. Lin, "Photonic band structures solved by a plane-wave-based transfer-matrix method," Phys. Rev. E 67, 046607 (2003). [CrossRef]
  20. D. W. Lynch and W. R. Hunter, "Nickel (Ni)" in Handbook of Optical Constants of Solid, E.D. Palik, ed. (Academic, London, 1985).
  21. Y. S. Touloukian and D. P. DeWitt, Thermal Radiative Properties: Metallic Elements and Alloys (IFI/Plenum, New York, 1970).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited