OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 12 — Jun. 9, 2008
  • pp: 8755–8768

Dispersion and stability analysis for a finite difference beam propagation method

J. de-Oliva-Rubio, I. Molina-Fernández, and R. Godoy-Rubio  »View Author Affiliations


Optics Express, Vol. 16, Issue 12, pp. 8755-8768 (2008)
http://dx.doi.org/10.1364/OE.16.008755


View Full Text Article

Enhanced HTML    Acrobat PDF (807 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Applying continuous and discrete transformation techniques, new analytical expressions to calculate dispersion and stability of a Runge-Kutta Finite Difference Beam Propagation Method (RK-FDBPM) are obtained. These expressions give immediate insight about the discretization errors introduced by the numerical method in the plane-wave spectrum domain. From these expressions a novel strategy to adequately set the mesh steps sizes of the RK-FDBPM is presented. Assessment of the method is performed by studying the propagation in several linear and nonlinear photonic devices for different spatial discretizations.

© 2008 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(130.3120) Integrated optics : Integrated optics devices
(130.4310) Integrated optics : Nonlinear
(220.2560) Optical design and fabrication : Propagating methods
(350.5500) Other areas of optics : Propagation

ToC Category:
Integrated Optics

History
Original Manuscript: April 2, 2008
Revised Manuscript: April 17, 2008
Manuscript Accepted: April 18, 2008
Published: May 30, 2008

Citation
J. de-Oliva-Rubio, I. Molina-Fernández, and R. Godoy-Rubio, "Dispersion and stability analysis for a finite difference beam propagation method," Opt. Express 16, 8755-8768 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-12-8755


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Koster, E. Cassan, S. Laval, L. Vivien, and D. Pascal, "Ultracompact splitter for submicrometer silicon-on-insulator rib waveguides," J. Opt. Soc. Am. A 21, 2180-2185 (2004). [CrossRef]
  2. Z. Chen, Z. Li, and B. Li, "A 2-to-4 decoder switch in SiGe/Si multimode interference," Opt. Express 14, 2671-2678 (2006). [CrossRef] [PubMed]
  3. J. Yamauchi, K. Sumida and H. Nakano, "Analysis of a polarization splitter with a multilayer filter using a padé-operator-based power-conserving fourth-order accurate beam-propagation method," IEEE Photon. Technol. Lett. 18, 1858-1860 (2006). [CrossRef]
  4. D. Dai, J. He, and S. He, "Compact silicon-on-insulator-based multimode interference coupler with bilevel taper structure," Appl. Opt. 44, 5036-5041 (2005). [CrossRef] [PubMed]
  5. S. T. Lee, C. E. Png, F. Y. Gardes, and G. T. Reed "Optically switched arrayed waveguide gratings using phase modulation," IEEE J. Lightwave Technol. 18, 1858-1860 (2006).
  6. M. Takenaka and Y. Nakano, "Multimode interference bistable laser diode," IEEE Photon. Technol. Lett. 15, 1035-1037, (2003). [CrossRef]
  7. M. Raburn, M. Takenaka, K. Takeda, X. Song, J. S. Barton, and Y. Nakano, "Integrable multimode interference distributed Bragg reflector laser all-optical flip flop," IEEE Photon. Technol. Lett. 18, 1421-1423 (2006). [CrossRef]
  8. N. N. Elkin, A. P. Napartovich, V. N. Troschieva, D. V. Vysotsky, T. Lee, S. C. Hagness, N. Kim, L. Bao, and J.L Mawst, "Antiresonant reflecting optical waveguide-type vertical-cavity surface emitting lasers: Comparison of full-vectorial finite difference time domain and 3D bidirectional beam propagation methods," IEEE J. Lightwave Technol. 24, 1834-1842 (2006). [CrossRef]
  9. M. Takenaka and Y. Nakano, "Simulation of all-optical flip-flops based on bistable laser diodes with nonlinear couplers," in Proceedings of the 4th Int. Conf. on Numerical Simulation of Optoelectronic Devices (NUSOD ???04), 15-18 (2004).
  10. C. Ma and E. Van Keuren, "A three-dimensional wide-angle BPM for optical waveguide structures," Opt. Express 15, 402-407 (2007). [CrossRef] [PubMed]
  11. J. Shibayama, T. Takahashi, J. Yamauchi, and H. Nakano, "A three-dimensional multistep horizontally wide-angle beam-propagation method based on the generalized Douglas scheme," IEEE Photon. Technol. Lett. 18, 2535-2537 (2006). [CrossRef]
  12. S. Sujecki "Wide-angle, finite-difference beam propagation in oblique coordinate system," J. Opt. Soc. Am. A 25, 138-145 (2008). [CrossRef]
  13. J. de-Oliva-Rubio and I. Molina-Fernández, "Fast semivectorial non-linear finite-difference beam-propagation method," Microwave Opt. Technol. Lett. 40,73-77 (2004). [CrossRef]
  14. J. de-Oliva-Rubio, Desarrollo y validación de técnicas de diferencias finitas para el análisis de dispositivos ópticos lineales y no-lineales, Ph. D. Thesis (in Spanish), ISBN: 84-690-3321-2, (Universidad de Málaga, 2006).
  15. W. P. Huang and C. L. Xu, "Simulation of three-dimensional optical waveguides by a full-vector beam propagation method," IEEE J. Quantum Electron. 29,2639-2649 (1993). [CrossRef]
  16. M. Matsuhara, "A novel beam propagation method based on the Galerkin method," Electron. Commun. Jpn. Pt. II 73, 41-47 (1990). [CrossRef]
  17. B. E. A. Saleh and M. C. Teich, Fundamentals of photonics, 2nd Ed. (John Wiley & Sons, 2007), Chap. 4, pp. 105-112.
  18. I. Molina Fernández, C. Camacho Peñalosa, and J. I. Ramos, "Application of the two-dimensional Fourier transform to nonlinear wave propagation phenomena," IEEE Trans. Microwave Theory Tech. 42,1079-1085 (1994). [CrossRef]
  19. C. Vassallo, Optical waveguides concepts, ser. Optical waveguides sciences and technology (Elsevier, Amsterdam, 1991), Chap. 1, pp. 18-26.
  20. I. Molina-Fernández, J. G. Wangüemert-Pérez, A. Ortega-Moñux, R. G. Bosisio, and KeWu, "Planar lightwave circuit six-port technique for optical measurements and characterizations," IEEE J. Lightwave Technol. 23, 2148-2157 (2005) [CrossRef]
  21. K. Hayata, A. Misawa, and M. Koshiba, "Spatial polarization instabilities due to transverse effects in nonlinear guided-wave systems," J Opt Soc Am B 7, 1268-1280 (1990). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited