OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 12 — Jun. 9, 2008
  • pp: 8769–8779

Optical microring resonators in fluorine-implanted lithium niobate

Aleksej Majkić, Manuel Koechlin, Gorazd Poberaj, and Peter Günter  »View Author Affiliations

Optics Express, Vol. 16, Issue 12, pp. 8769-8779 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (4220 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on the production and characterisation of optical microring resonators and optical channel waveguides by using fluorine-ion implantation and planar structuring in lithium niobate. We demonstrate the production of single-mode planar waveguides by low fluence fluorine-ion implantation (ϕ=2.5·1014 ions/cm2) into lithium niobate wafers. The waveguides are strongly confined by the amorphous 2-µm wide optical barrier induced by the implantation process. A refractive index contrast of Δno =0.17 at the telecom wavelength λ=1.5 µm has been determined between the waveguide and the barrier. Planar structuring with ridge height of up to 1.2 µm has been achieved by laser lithography masking and Ar+ sputtering. For TE waves, the channel waveguides exhibit propagation losses lower than 8 dB/cm. First ring resonators with 80-µm radius have been fabricated by planar structuring in fluorine-ion implanted lithium niobate. The measured resonance curves show an extinction ratio of 14 dB, a free spectral range of 2.0 nm and a finesse of 4.

© 2008 Optical Society of America

OCIS Codes
(230.2090) Optical devices : Electro-optical devices
(230.7380) Optical devices : Waveguides, channeled
(230.7390) Optical devices : Waveguides, planar
(250.7360) Optoelectronics : Waveguide modulators
(230.4555) Optical devices : Coupled resonators

ToC Category:
Optical Devices

Original Manuscript: April 11, 2008
Revised Manuscript: May 26, 2008
Manuscript Accepted: May 27, 2008
Published: May 30, 2008

Aleksej Majkic, Manuel Koechlin, Gorazd Poberaj, and Peter Günter, "Optical microring resonators in fluorineimplanted lithium niobate," Opt. Express 16, 8769-8779 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. J. Vahala, "Optical microcavities," Nature 424, 839-846 (2003). [CrossRef] [PubMed]
  2. P. Rabiei, W. H. Steier, C. Zhang, and L. Dalton, "Polymer micro-ring filters and modulators," J. Lightwave Technol. 20, 1968-1975 (2002). [CrossRef]
  3. C-Y. Chao and L. J. Guo, "Biochemical sensors based on polymer microrings with sharp asymmetrical resonance," Appl. Phys. Lett. 83, 1527-1529 (2003). [CrossRef]
  4. A. Guarino, G. Poberaj, D. Rezzonico, R. Degl???Innocenti, and P. Günter, "Electro-optically tunable microring resonators in lithium niobate," Nat. Photonics 1, 407-410 (2007). [CrossRef]
  5. T-J. Wang, C-H. Chu, and C-Y. Lin, "Electro-optically tunable microring resonators on lithium niobate," Opt. Lett. 32, 2777-2779 (2007). [CrossRef] [PubMed]
  6. M. Jazbinšek and M. Zgonik, "Material tensor parameters of LiNbO3 relevant for electro- and elasto-optics," Appl. Phys. B 74, 407-414 (2002). [CrossRef]
  7. M. N. Armenise, "Fabrication techniques of lithium niobate waveguides," IEE Proceedings 135, Pt. J, No 2, 85-91 (1988).
  8. A. Mahapatra and W. C. Robinson, "Integrated-optic ring resonators made by proton exchange in lithium niobate," Appl. Opt. 24, 2285-2286 (1985). [CrossRef] [PubMed]
  9. W. Sohler, B. K. Das, D. Dey, S. Reza, H. Suche, R. Ricken, "Erbium-Doped Lithium Niobate Waveguide Lasers," IEICE Trans. Electron. E 88-C, 990-996 (2005). [CrossRef]
  10. T-J. Wang and C-H. Chu, "Wavelength-Tunable Microring Resonator on Lithium Niobate," IEEE Photon. Technol. Lett. 19, 1904-1906 (2007). [CrossRef]
  11. F. Chen, X-L. Wang, and K-M. Wang, "Development of ion-implanted optical waveguides in optical materials: A review," Opt. Mat. 29,1 523-1542 (2007). [CrossRef]
  12. A. M. Radojevic, M. Levy, R. M. Osgood, A. Kumar, R. Bakhru, C. Tian, and C. Evans, "Large etch-selectivity enhancement in the epitaxial liftoff of single-crystal LiNbO3 films," Appl. Phys. Lett. 74, 3197-3199 (1999). [CrossRef]
  13. J. Olivares, A. García-Navarro, G. García, F. Agulló-López, Agulló-Rueda, A. García-Cabañes, and M. Carrascosa, "Buried amorphous layers by electronic excitation in ion-beam irradiated lithium niobate: Structure and kinetics," J. Appl. Phys. 101, 033512 (2007). [CrossRef]
  14. J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, "Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation," Appl. Phys. Lett. 86, 183501 (2005). [CrossRef]
  15. J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Range of Ions in Solids (Pergamon Press, New York, 1985).
  16. Concept to Volume (C2V), "OlympIOs Integrated Optics Software," http://www.c2v.nl
  17. A. Majki??, G. Poberaj, R. Degl???Innocenti, M. Döbeli, and P. Günter, "Cr:LiSrAlF6 channel waveguides as broadband fluorescence sources," Appl. Phys. B 88, 205-209 (2007). [CrossRef]
  18. R. Degl???Innocenti, A. Majkic, P. Vorburger, G. Poberaj, P. Günter, M. Döbeli, "Ultraviolet electro-optic amplitude modulation in ?-BaB2O4 waveguides," Appl. Phys. Lett. 91, 051105 (2007). [CrossRef]
  19. R. Regener and W. Sohler, "Loss in Low-Finesse Ti:LiNbO3 Optical Waveguide Resonators," Appl.Phys. B 36, 143-147 (1985). [CrossRef]
  20. M. Hammer, K. R. Hiremath, and R. Stoffer, "Analytical approaches to the description of Optical Microresonator Devices," in Microresonators as Building Blocks for VLSI Photonics, F. Michelotti, A. Driessen, and M. Bertolotti, eds., (AIP Conference Proceedings, Melville, New York, 2004).
  21. H. Tazawa and H. Steier, "Analysis of Ring Resonator-Based Travelling-Wave Modulators," IEEE Photon. Technol. Lett. 18, 211-213 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited