OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 12 — Jun. 9, 2008
  • pp: 8825–8834

Magnetically tunable negative permeability metamaterial composed by split ring resonators and ferrite rods

Lei Kang, Qian Zhao, Hongjie Zhao, and Ji Zhou  »View Author Affiliations

Optics Express, Vol. 16, Issue 12, pp. 8825-8834 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (479 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We experimentally demonstrate a tunable negative permeability metamaterial (NPM) at microwave frequencies by introducing yttrium iron garnet (YIG) rods into a periodic array of split ring resonators (SRRs). Different from those tuned by controlling the capacitance of equivalent LC circuit of SRR, this metamaterial is based on a mechanism of magnetically tuning the inductance via the active ambient effective permeability. For magnetic fields from 0 to 2000 Oe and from 3200 to 6000 Oe, the resonance frequencies of the metamaterial can blueshift about 350 MHz and redshift about 315 MHz, respectively. Both shifts are completely continuous and reversible. Correspondingly, the tunable negative permeabilities are widened by about 360 MHz and 200 MHz compared to that without YIG rods.

© 2008 Optical Society of America

OCIS Codes
(350.4010) Other areas of optics : Microwaves

ToC Category:

Original Manuscript: March 24, 2008
Revised Manuscript: May 17, 2008
Manuscript Accepted: May 29, 2008
Published: June 2, 2008

Lei Kang, Qian Zhao, Hongjie Zhao, and Ji Zhou, "Magnetically tunable negative permeability metamaterial composed by split ring resonators and ferrite rods," Opt. Express 16, 8825-8834 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000). [CrossRef]
  2. R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001). [CrossRef] [PubMed]
  3. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000). [CrossRef] [PubMed]
  4. A. A. Houck, J. B. Brock, and I. L. Chuang, "Experimental observations of a left-handed material that obeys Snell???s law," Phys. Rev. Lett. 90, 137401 (2003). [CrossRef] [PubMed]
  5. C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, "Experimental verification and simulation of negative index of refraction using Snell???s law," Phys. Rev. Lett. 90, 107401 (2003). [CrossRef] [PubMed]
  6. N. Seddon and T. Bearpark, "Observation of the inverse Doppler effect," Science 302, 1537-1540 (2003). [CrossRef] [PubMed]
  7. V. G. Veselago, "The electrodynamics of substances with simultaneously negative values of ? and ?," Soviet Physics USPEKI 10, 509-514 (1968). [CrossRef]
  8. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Steward, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999). [CrossRef]
  9. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Steward, "Low frequency plasmons in thin-wire structures," J. Phys. Condens. Matter 10, 4785-4808 (1998). [CrossRef]
  10. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science 314,977-980 (2006). [CrossRef] [PubMed]
  11. W. Cai, U. Chettiar, A. V. Kildishev, and V. M. Shalaev, "Optical cloaking with metamaterials," Nature Photonics 1, 224-227 (2007). [CrossRef]
  12. F. J. Rachford, D. N. Armstead, V. G. Harris and C. Vittoria, "Simulations of ferrite-dielectric-wire composite negative index materials," Phys. Rev. Lett. 99, 057202 (2007). [CrossRef] [PubMed]
  13. A. Pimenov, A. Loid, K. Gehrke, V. Moshnyaga, and K. Samwer, "Negative refraction observed in a metallic ferromagnet in the gigahertz frequency range," Phys. Rev. Lett. 98, 197401 (2007). [CrossRef] [PubMed]
  14. H. J. Zhao, J. Zhou, Q. Zhao, B. Li, L. Kang, and Y. Bai, "Magnetotunable left-handed material consisting of yttrium iron garnet slab and metallic wires," Appl. Phys. Lett. 91, 131107 (2007). [CrossRef]
  15. B. Hou, G. Xu, H. K. Wong, and W. J. Wen, "Tuning of photonic bandgaps by a field-induced structural change of fractal metamaterials," Opt. Express 13, 9149-9154 (2005). [CrossRef] [PubMed]
  16. W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, "Dynamical electric and magnetic metamaterial response at terahertz frequencies," Phys. Rev. Lett. 96, 107401 (2006). [CrossRef] [PubMed]
  17. X. P. Zhao, Q. Zhao, L. Kang, J. Song, and Q. H. Fu, "Defect effect of split ring resonators in left-handed metamaterials," Phys. Lett. A 346, 87-91 (2005). [CrossRef]
  18. H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, "Active terahertz metamaterial devices," Nature 444, 597-600 (2006). [CrossRef] [PubMed]
  19. I. Gil, J. G. Garcia, J. Bonache, F. Martin, M. Sorolla, and R. Marques, "Varactor-loaded split ring resonators for tunable notch filters at microwave frequencies," Electron. Lett. 40, 1347-1348 (2004). [CrossRef]
  20. H. Chen, Bae-Ian Wu, L. Ran, T. M. Grzegorczyk, and J. A. Kong, "Controllable left-handed metamaterial and its application to a steerable antenna," Appl. Phys. Lett. 89, 053509 (2006). [CrossRef]
  21. I. V. Shadrivov, S. K. Morrison, and Y. S. Kivshar, "Tunable split-ring resonators for nonlinear negative-index metamaterials," Opt. Express 14, 9344-9349 (2006). [CrossRef] [PubMed]
  22. Q. Zhao, L. Kang, B. Du, B. Li, and J. Zhou, "Electrically tunable negative permeability metamaterials based on nematic liquid crystals," Appl. Phys. Lett. 90, 011112 (2007). [CrossRef]
  23. D. H. Werner, Do-Hoon Kwon, and Iam-Choon Khoo, "Liquid crystal clad near-infrared metamaterials with tunable negative-zero-positive refractive indices," Opt. Express 15, 3342-3347 (2007). [CrossRef] [PubMed]
  24. A. Degiron, J. J. Mock, and D. R. Smith, "Modulating and tuning the response of metamaterials at the unit cell level," Opt. Express 15, 1115-1127 (2007). [CrossRef] [PubMed]
  25. E. Ozbay, K. Aydin, S. Butun, K. Kolodziejak, and D. Pawlak, "Ferroelectric based tuneable SRR based metamaterial for microwave applications," in Proceedings of the 37th European Microwave Conference (Institute of Electrical and Electronics Engineers, New York, 2007), pp. 497-499.
  26. W. A. Roshen, "Effect of Finite Thickness of Magnetic Substrate on Planar Inductors," IEEE Trans. Magn. 26, 270-275 (1990). [CrossRef]
  27. K. Shirakawa, S. Ishibashi, Y. Kobayashi, F. Takeda, and K. Murakami, "A new planar inductor with ring-connected magnetic core," IEEE Trans. Magn. 26, 2268-2270 (1990). [CrossRef]
  28. X. Y. Gao, Y. Zhou, Y. Cao, C. Lei, W. Ding, H. Choi, and J. Won, "A copper/polyimide fabrication process for fabricating high-inductance microinductor," IEEE Trans. Elec. Pack. & Manu. 30, 123-127 (2007) [CrossRef]
  29. B. Lax and K. J. Button, Microwave ferrites and ferrimagnetics, (McGraw-Hill, New York, 1962).
  30. V. B. Bregara and M. Pavlin, "Effective-susceptibility tensor for a composite with ferromagnetic inclusions: enhancement of effective-media theory and alternative ferromagnetic approach," J. Appl. Phys. 95, 6289-6293 (2004). [CrossRef]
  31. V. B. Bregara, "Effective-medium approach to the magnetic susceptibility of compositeswith ferromagnetic inclusions," Phys. Rev. B 71, 174418 (2005). [CrossRef]
  32. G. W. Milton, "Bounds on the complex permettivity of a two-component composite material," J. Appl. Phys. 52, 5286-5293 (1981). [CrossRef]
  33. A. M. Nicholson and G. F. Ross, "Measurement of the intrinsic properties of materials by time domain techniques," IEEE Trans. Instrum. Meas. IM-19, 377-382 (1970). [CrossRef]
  34. D. R. Smith, D. C. Vier, Th. Koschny, and C. M. Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterials," Phys. Rev. E 71, 036617 (2005). [CrossRef]
  35. O. Reynet and O. Acher, "Voltage controlled metamaterial," Appl. Phys. Lett. 84, 1198-1200 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited