OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 12 — Jun. 9, 2008
  • pp: 8876–8886

Decrease of pulse-contrast in nonlinear chirped-pulse amplification systems due to high-frequency spectral phase ripples

Damian N. Schimpf, Enrico Seise, Jens Limpert, and Andreas Tünnermann  »View Author Affiliations


Optics Express, Vol. 16, Issue 12, pp. 8876-8886 (2008)
http://dx.doi.org/10.1364/OE.16.008876


View Full Text Article

Enhanced HTML    Acrobat PDF (729 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

It is analytically shown that weak initial spectral phase modulations cause a pulse-contrast degradation at the output of nonlinear chirped-pulse amplification systems. The Kerr-nonlinearity causes an energy-transfer from the main pulse to side-pulses during nonlinear amplification. The relative intensities of these side-pulses can be described in terms of Bessel-functions. It is shown that the intensities of the pulses are dependent on the magnitude of the accumulated nonlinear phase-shift (i.e., the B-integral), the depth and period of the initial spectral phase-modulation and the slope of the linear stretching chirp. The results are applicable to any type of laser amplifier that is based on the technique of chirped-pulse amplification. The analytical results presented in this paper are of particular importance for high peak-power laser applications requiring high pulse-contrasts, e.g. high field physics.

© 2008 Optical Society of America

OCIS Codes
(060.2320) Fiber optics and optical communications : Fiber optics amplifiers and oscillators
(140.3280) Lasers and laser optics : Laser amplifiers
(190.3270) Nonlinear optics : Kerr effect
(320.7090) Ultrafast optics : Ultrafast lasers

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: April 3, 2008
Revised Manuscript: May 6, 2008
Manuscript Accepted: May 7, 2008
Published: June 2, 2008

Citation
Damian Schimpf, Enrico Seise, Jens Limpert, and Andreas Tünnermann, "Decrease of pulse-contrast in nonlinear chirped-pulse amplification systems due to high-frequency spectral phase ripples," Opt. Express 16, 8876-8886 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-12-8876


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. M. Strickland and G. Mourou, "Compression of amplified chirped optical pulses," Opt. Commun. 56, 219-221 (1985). [CrossRef]
  2. G. P. Agrawal, "Nonlinear Fiber Optics," 3rd edition (Academic Press, 2001).
  3. M. D. Perry, T. Ditmire, and B. C. Stuart, "Self-phase modulation in chirped-pulse amplification," Opt. Lett. 19, 2149-2151 (1994). [CrossRef] [PubMed]
  4. A. Braun, S. Kane, and T. Norris, "Compensation of self-phase modulation in chirped-pulse amplification laser systems," Opt. Lett. 22, 615-617 (1997). [CrossRef] [PubMed]
  5. J. Limpert, F. R¨oser, T. Schreiber, and A. T¨unnermann, "High-Power Ultrafast Fiber Laser Systems," IEEE J. Sel. Top. Quantum Electron. 12, 233-244 (2006). [CrossRef]
  6. J. Limpert, O. Schmidt, J. Rothhardt, F. Roser, T. Schreiber, A. Tunnermann, S. Ermeneux, P. Yvernault, and F. Salin, "Extended single-mode photonic crystal fiber laser," Opt. Express 14, 2715-2720 (2006). [CrossRef] [PubMed]
  7. F. R¨oser, T. Eidam, J. Rothhardt, O. Schmidt, D. N. Schimpf, J. Limpert, and A. T¨unnermann, "Millijoule pulse energy high repetition rate femtosecond fiber chirped-pulse amplification system," Opt. Lett. 32, 3495-3497 (2007). [CrossRef] [PubMed]
  8. L. Shah, Z. Liu, I. Hartl, G. Imeshev, G. C. Cho, and M. E. Fermann, "High energy femtosecond Yb cubicon fiber amplifier," Opt. Express 13, 4717-4722 (2005). [CrossRef] [PubMed]
  9. D. N. Schimpf, J. Limpert, and A. T¨unnermann, "Controlling the influence of SPM in fiber-based chirped pulse amplification systems by using an actively shaped parabolic spectrum," Opt. Express 15, 16945-16953 (2007). [CrossRef] [PubMed]
  10. T. Yilmaz, L. Vaissie, M. Akbulut, T. Booth, J. Jasapara, M. J. Andrejco, A. D. Yablon, C. Headley, and D. J. DiGovanni, "Large-mode-area Er-doped fiber chirped pulse amplification system for high-energy sub-picosecond pulses at 1.55 m," Proc. SPIE 6873, 687354 (2008).
  11. A. Galvanauskas, G. C. Cho, A. Hariharan, M. E. Fermann, and D. Harter, "Generation of high-energy femtosecond pulses in multi-core Yb-fiber chirped-pulse amplification systems," Opt. Lett. 26, 935-937 (2001). [CrossRef]
  12. A. Galvanauskas, "Mode-scalable Fiber-Based Chirped Pulse Amplification Systems," IEEE J. Sel. Top. Quantum Electron. 7, 504-517 (2001). [CrossRef]
  13. L. Kuznetsova and F. W . Wise, "Scaling of femtosecond Yb-doped fiber amplifiers to tens of microjoule pulse energy via nonlinear chirped pulse amplification," Opt. Lett. 32, 2671-2673 (2007). [CrossRef] [PubMed]
  14. D. N. Schimpf, E. Seise, J. Limpert, and A. Tunnermann, "The impact of spectral modulations on the contrast of pulses of nonlinear chirped-pulse amplification systems," submitted to Optics Express. [PubMed]
  15. N. V. Didenko, A. V. Konyashchenko, A. P. Lutsenko, and S. Yu. Tenyakov, "Contrast degradation in a chirpedpulse amplifier due to generation of prepulses by postpulses," Opt. Express 16, 3178-3190 (2008). [CrossRef] [PubMed]
  16. V. Bagnoud and F. Salin, "Influence of optical quality on chirped pulse amplification: characterization of a 150-nm-bandwidth stretcher," J. Opt. Soc. Am. B 16, 188-193 (1999). [CrossRef]
  17. G. Cheriaux, O. Albert, V. W¨anman, J. P. Chambaret, C. Felix, and G. Mourou, "Temporal control of amplified femtosecond pulses with a deformable mirror in a stretcher," Opt. Lett. 26, 169-171 (2001). [CrossRef]
  18. E. Zeek, R. Bartels, M. M. Murname, H. C. Kapteyn, S. Backus, and G. Vdovin, "Adaptive pulse compression for transform-limited 15-fs high-energy pulse generation," Opt. Lett. 25, 587-589 (2000). [CrossRef]
  19. B. C. Walker, C. Toth, D. Fittinghoff, and T. Guo, "Theoretical and experimental spectral phase error analysis for pulsed laser fields," J. Opt. Soc. Am. B 16, 1292-1298 (1999). [CrossRef]
  20. K. Ennser, M. Ibsen, M. Durkin, M. N. Zervas, and R. I. Laming, "Influence of Nonideal Chirped Fiber Grating Characteristics on Dispersion Cancellation," IEEE Photon. Technol. Lett. 10, 1476-1478 (1998). [CrossRef]
  21. A. Galvanauskas, M. Ferman, and D. Harter, "All-fiber femtosecond pulse amplification circuit using chirped bragg gratings," Appl. Phys. Lett. 66, 1053 (1995). [CrossRef]
  22. C. Dorrer and J. Bromage, "Impact of high-frequency spectral phase modulation on the temporal profile of short optical pulses," Opt. Express 16, 3058-3068 (2008). [CrossRef] [PubMed]
  23. M. Kaluza, J. Schreiber, M. I. K. Santala, G. D. Tsakiris, K. Eidmann, J. Meyer-ter-Vehn, and K. J. Witte, "Influence of the Laser Prepulse on Proton Acceleration in Thin-Foil Experiments," Phys. Rev. Lett. 93, 0450031-4 (2004). [CrossRef]
  24. M. I. K. Santala, M. Zepf, I. Watts, F. N. Beg, E. Clark, M. Tatarakis, K. Krushelnick, A. E. Dangor, T. McCanny, I. Spencer, R. P. Singhal, K.W. D. Ledingham, S. C. Wilks, A. C. Machacek, J. S. Wark, R. Allott, R. J. Clarke, and P. A. Norreys, "Effect of the Plasma Density Scale Length on the Direction of Fast Electrons in Relativistic Laser-Solid Interactions," Phys. Rev. Lett. 84, 1459-1462 (2000). [CrossRef] [PubMed]
  25. S. P. D. Mangles, A. G. R. Thomas, M. C. Kaluza, O. Lundh, F. Lindau, A. Persson, Z. Najmudin, C.-G. Wahlstrom, C. D. Murphy, C. Kamperidis, K. L. Lancaster, E. Divall, and K. Krushelnick, "Effect of laser contrast ratio on electron beam stability in laser wakefield acceleration experiments," Plasma Phys. Control. Fusion 48, B83B90 (2006). [CrossRef]
  26. M. Zepf, G. D. Tsakiris, G. Pretzler, I. Watts, D. M. Chambers, P. A. Norreys, U. Andiel, A. E. Dangor, K. Eidmann, C. Gahn, A. Machacek, J. S. Wark, and K. Witte, "Role of the plasma scale length in the harmonic generation from solid targets," Phys. Rev. E 58, R5253-R5256 (1998). [CrossRef]
  27. F. Tavella, K. Schmid, N. Ishii, A. Marcinkevicius, L. Veisz, and F. Krausz, "High-dynamic range pulse-contrast measurements of a broadband optical parametric chirped-pulse amplifier," Appl. Phys. B 81, 753756 (2005). [CrossRef]
  28. V. Bagnoud, J. D. Zuegel, N. Forget, and C. Le Blanc, "High-dynamic-range temporal measurements of short pulses amplified by OPCPA," Opt. Express 15, 5504-5511 (2007). [CrossRef] [PubMed]
  29. X. D. Cao, D. D. Meyerhofer, and G. P. Agrawal, "Optimization of optical beam steering in nonlinear Kerr media by spatial phase modulation," J. Opt. Soc. Am. B 11, 2224-2231 (1994). [CrossRef]
  30. M. Abramowitz and I. A. Stegun, "Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables," Generating Function for the Bessel-function, formula 9.1.41 (Dover Publications, 1970).
  31. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, 1995).
  32. B. H. Kolner, "Space-time duality and the theory of temporal imaging," IEEE J. Quantum Electron. 30, 1951-1963 (1994). [CrossRef]
  33. S. A. Akhmanov, V. A. Vysloukh, and A. S. Chirkin, Optics of Femtosecond Laser Pulse (American Institute of Physics, 1992), p. 93-98.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited