OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 12 — Jun. 9, 2008
  • pp: 8887–8895

Modeling endface output patterns of optical micro/nanofibers

Shan-Shan Wang, Jian Fu, Min Qiu, Ke-Ji Huang, Zhe Ma, and Li-Min Tong  »View Author Affiliations

Optics Express, Vol. 16, Issue 12, pp. 8887-8895 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (381 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Endface output patterns of micro/nanofibers (MNFs) are simulated using a Three-Dimension Finite-Difference Time-Domain (3D-FDTD) method. The intensity distribution and beam widths of near- or far-field output patterns of freestanding silica and tellurite MNFs with flat, angled, spherical and tapered endfaces in air and/or water are obtained. It shows that, for a subwavelength-diameter MNF, highly confined output beam can be obtained in the near field, and the beam width can be tuned by the ratio of fiber diameter and light wavelength with a minimum width smaller than the wavelength. Meanwhile, MNFs with shaped endfaces behave differently from standard fibers in reflection, redirection and focus of light beam at the endfaces. These results may offer valuable references for practical evaluation and application of terminated MNFs with wavelength- or subwavelength-scale endfaces.

© 2008 Optical Society of America

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(230.7370) Optical devices : Waveguides
(350.3950) Other areas of optics : Micro-optics

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: April 7, 2008
Revised Manuscript: May 19, 2008
Manuscript Accepted: May 21, 2008
Published: June 2, 2008

Shan-Shan Wang, Jian Fu, Min Qiu, Ke-Ji Huang, Zhe Ma, and Li-Min Tong, "Modeling endface output patterns of optical micro/nanofibers," Opt. Express 16, 8887-8895 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Bures and R. Ghosh, "Power density of the evanescent field in the vicinity of a tapered fiber," J. Opt. Soc. Am. A 16, 1992-1996 (1999). [CrossRef]
  2. L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature (London) 426, 816-819 (2003). [CrossRef] [PubMed]
  3. L. M. Tong, J. Y. Lou, and E. Mazur, "Single-mode guiding properties of subwavelength- diameter silica and silicon wire waveguides," Opt. Express 12, 1025-1035 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-6-1025. [CrossRef] [PubMed]
  4. S. G. Leon-Saval, T. A. Birks, W. J. Wadsworth and P. St. J. Russell, and M. W. Mason, "Supercontinuum generation in submicron fibre waveguides," Opt. Express 12, 2864-2869 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-13-2864. [CrossRef] [PubMed]
  5. M. A. Foster, K. D. Moll, and A. L. Gaeta, "Optimal waveguide dimensions for nonlinear interactions," Opt. Express 12, 2880-2887 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-13-2880. [CrossRef] [PubMed]
  6. M. Sumetsky, "Uniform coil optical resonator and waveguide: transmission spectrum, eigenmodes, and dispersion relation," Opt. Express 13, 4331-4340 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-11-4331. [CrossRef] [PubMed]
  7. R. R. Gattass, G. T. Svacha, L. M. Tong, and E. Mazur, "Supercontinuum generation in submicrometer diameter silica fibers," Opt. Express 14, 9408-9414 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-20-9408. [CrossRef] [PubMed]
  8. M. A. Foster, A. C. Turner, M. Lipson, and A. L. Gaeta, "Nonlinear optics in photonic nanowires," Opt. Express 16, 1300-1320 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-2-1300. [CrossRef] [PubMed]
  9. L. M. Tong, J. Y. Lou, R. R. Gattass, S. L. He, X. W. Chen, L. Liu, and E. Mazur, "Assembly of silica nanowires on silica aerogels for microphotonic devices," Nano Lett. 5, 259-262 (2005). [CrossRef] [PubMed]
  10. W. Liang, Y. Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, "Highly sensitive fiber Bragg grating refractive index sensors," Appl. Phys. Lett. 86, 151122 (2005). [CrossRef]
  11. M. Sumetsky, Y. Dulashko, J. M. Fini, and A. Hale, "Optical microfiber loop resonator," Appl. Phys. Lett. 86, 161108 (2005). [CrossRef]
  12. P. Polynkin, A. Polynkin, N. Peyghambarian, and M. Mansuripur, "Evanescent field-based optical fiber sensing device for measuring the refractive index of liquids in microfluidic channels, " Opt. Lett. 30, 1273-1275 (2005). [CrossRef] [PubMed]
  13. J. Villatoro and D. Monzon-Hernandez, "Fast detection of hydrogen with nano fiber tapers coated with ultra thin palladium layers," Opt. Express 135087-5092 (2005), http://www.opticsinfobase.org/abstract.cfm?id=84574. [CrossRef] [PubMed]
  14. X. S. Jiang, L. M. Tong, G. Vienne, and X. Guo, "Demonstration of microfiber knot laser," Appl. Phys. Lett. 88, 223501 (2006). [CrossRef]
  15. X. S. Jiang, Y. Chen, G. Vienne, and L. M. Tong, "All-fiber add-drop filters based on microfiber knot resonators," Opt. Lett. 32, 1710-1712 (2007). [CrossRef] [PubMed]
  16. Y. H. Li and L. M. Tong, "Mach-Zehnder interferometers assembled with optical microfibers or nanofibers," Opt. Lett. 33, 303-305 (2008). [CrossRef] [PubMed]
  17. V. Bondarenko and Y. Zhao, " "Needle beam:" Beyond-diffraction-limit concentration of field and transmitted power in dielectric waveguide," Appl. Phys. Lett. 89, 141103 (2006). [CrossRef]
  18. Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. D. Yang, "Tunable nanowire nonlinear optical probe," Nature 447, 1098-1101 (2007). [CrossRef] [PubMed]
  19. A. V. Maslov and C. Z. Ning, "Reflection of guided modes in a semiconductor nanowire laser," Appl. Phys. Lett. 83, 1237-1239 (2003). [CrossRef]
  20. L. V. Van, S. Ruhle, and D. Vanmaekelbergh, "Phase-correlated nondirectional laser emission from the end facets of a ZnO nanowire," Nano Lett. 6, 2707-2711 (2006). [CrossRef]
  21. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech, 1995).
  22. K. Kawano and T. Kitoh, Introduction to Optical Waveguide Analysis: Solving Maxwell???s Equations and the Schrödinger Equation (Wiley, 2001). [PubMed]
  23. D. Roundy, M. Ibanescu, P. Bermel, A. Farjadpour, J. D. Joannopoulos, and S. G. Johnson, The Meep FDTD package, http://ab-initio.mit.edu/meep/.
  24. P. Schiebener, J. Straub, J. M. H. Levelt Sengers, and J. S. Gallagher, "Refractive index of water and steam as function of wavelength temperature and density," J. Phys. Chem. Ref. Data. 19, 677-717 (1990). [CrossRef]
  25. P. Klocek, Handbook of Infrared Optical Materials, (Marcel Dekker, New York, 1991).
  26. L. M. Tong, L. L. Hu, J. J. Zhang, J. R. Qiu, Q. Yang, J. Y. Lou, Y.H. Shen, J. L. He, and Z. Z. Ye, "Photonic nanowires directly drawn from bulk glasses," Opt. Express 14, 82-87 (2006). [CrossRef] [PubMed]
  27. Z. Ma, S. S. Wang, Q. Yang, and L. M. Tong, "Near-field optical imaging of evanescent waves guided by micro/nanofibers," Chin. Phys. Lett. 24, 3006-3008 (2007).
  28. A. Méndez and T. F. Morse, Specialty optical fibers handbook (Elsevier, Amsterdam, 2007).
  29. H. Li, B. A. Standish, A Mariampillai, N. R. Munce, Y. Mao, S. Chiu, N. E. Marcon, B. C. Wilson, A. Vitkin, and V. X. D. Yang, "Feasibility of interstitial Doppler optical coherence tomography for in vivo detection of microvascular changes during photodynamic therapy," Lasers Surg. Med. 38, 754-761 (2006). [CrossRef] [PubMed]
  30. S. K. Mondal, S. Gangopadhyay, and S. Sarkar, "Analysis of an upside-down taper lens end from a single-mode step-index fiber," Appl. Opt. 37, 1006-1009 (2005). [CrossRef]
  31. Y. X. Mao, S. D. Chang, S. Sherif, and C. Flueraru, "Graded-index fiber lens proposed for ultrasmall probes used in biomedical imaging," Appl. Opt. 46, 5887-5894 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (1834 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited