OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 12 — Jun. 9, 2008
  • pp: 8995–9010

Thermal conductivity measurements of laser crystals by infrared thermography. Application to Nd:doped crystals

Julien Didierjean, Emilie Herault, François Balembois, and Patrick Georges  »View Author Affiliations


Optics Express, Vol. 16, Issue 12, pp. 8995-9010 (2008)
http://dx.doi.org/10.1364/OE.16.008995


View Full Text Article

Enhanced HTML    Acrobat PDF (253 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a thermal conductivity measurement method for laser crystals based on thermal mapping of the crystal face by an infrared camera. Those measurements are performed under end-pumping of the laser crystal and during laser operation. The calculation of the fraction of pump power converted into heat is therefore simplified, and it is possible to link easily the temperature in the crystal to the thermal conductivity. We demonstrate the efficiency of this measurement method with a Nd:YAG crystal, before using it to compare Nd:YVO4 and Nd:GdVO4 crystals.

© 2008 Optical Society of America

OCIS Codes
(140.3380) Lasers and laser optics : Laser materials
(140.5680) Lasers and laser optics : Rare earth and transition metal solid-state lasers
(140.6810) Lasers and laser optics : Thermal effects

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: September 14, 2007
Revised Manuscript: January 17, 2008
Manuscript Accepted: January 21, 2008
Published: June 4, 2008

Citation
Julien Didierjean, Emilie Herault, François Balembois, and Patrick Georges, "Thermal conductivity measurements of laser crystals by infrared thermography. Application to Nd:doped crystals," Opt. Express 16, 8995-9010 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-12-8995


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Parker, R. J. Jenkins, C. P. Butler, and G. L. Abbott, "Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity," J. of Appl. Phys. 32, 1679 (1961). [CrossRef]
  2. L. Pottier, "Micrometer scale visualization of thermal waves by photoreflectance microscopy," Appl. Phys. Lett. 64, 1618 (1994). [CrossRef]
  3. A. Salazar, A. Sanchez-Lavega, and J. Fernandez, "Thermal diffusivity measurements in solids by the ??mirage?? technique: Experimental results," J. of Appl. Phys. 69, 1216 (1991). [CrossRef]
  4. J. F. Bisson, D. Fournier, M. Poulain, O. Lavigne, and R. Mévre, "Thermal conductivity of Yttria-Zirconia single crystals determined by spatially resolved infrared thermography," J. Am. Ceram. Soc. 83, 1993-1998 (2000). [CrossRef]
  5. Y. Sato and T. Taira, "The studies of thermal conductivity in GdVO4, YVO4, and Y3Al5O12 measured by quasi-one-dimensional flash method," Opt. Express 14, 10528-10536 (2006). [CrossRef] [PubMed]
  6. A. I. Zagumennyi, G. B. Lutts, P. A. Popov, N. N. Sirota, and I. A. Shcherbakov, "The thermal conductivity of YAG and YSAG laser crystals," Laser Phys. 3, 1064-1065 (1993).
  7. L. J. Qin, X. L. Meng, H. Y. Shen, B. C. Xu, L. X. Huang, H. R. Xia, P. Zhao, and G. Zheng, "Thermal conductivity and refractive indices of Nd:GdVO4 crystals," Cryst. Res. Technol. 38,793-797 (2003). [CrossRef]
  8. J. R. O??connor, "Unusual crystal field energy levels and efficient laser properties of YVO4:Nd3+," Appl. Phys. Lett. 9, 407-409 (1966).
  9. A. I. Zagumennyi, V. G. Ostroumov, I. A. Shcherbakov, T. Jensen, J. P. Meyen, and G. Huber, "The Nd:GdVO4 crystal, a new material for diode-pumped lasers," Sov. Quantum Electron. 22, 1071-1072 (1992). [CrossRef]
  10. B. H. T. Chai, G. Loutts, J. Lefaucheur, X. X. Zhang, P. Hong, M. Bass, I. A. Shcherbakov, and A. I. Zagumennyi, "Comparison of laser performance of Nd-doped YVO4, GdVO4, Ca5(PO4)3F, Sr5(PO4)3F, and Sr5(VO4)3F," Proceeding OSA ASSL 1994, 20, 41 (1994).
  11. C. Kränkel,  et al., "Continuous wave laser operation of Yb3+:GdVO4," Appl. Phys. B 79, 543-546 (2004). [CrossRef]
  12. P. A. Studenikin, A. I. Zagumennyi, Yu. D. Zavartsev, P. A. Popov, I. A. Shcherbakov, "GdVO4 as a new medium for solid-state lasers: some optical and thermal properties of crystals doped with Cd3+, Tm3+, and Er3+ ions," Quantum Electron. 25, 1162 (1995). [CrossRef]
  13. W. Koechner, Solid State Laser Engineering, 5th Edition (Springer, 1999).
  14. A. Cousins, "Temperature and thermal stress scaling in finite-length end-pumped laser rods," IEEE J. Quantum Electron. 28, 1057 (1992). [CrossRef]
  15. S. Chenais, F. Druon, S. Forget, and F. Balembois, "On thermal effects in solid-state lasers: The case of ytterbium doped materials," Prog. Quantum Electron. 30, 89-153 (2006). [CrossRef]
  16. T. Y. Fan, "Heat Generation in Nd:YAG and Yb:YAG," J. of Quantum Electron. 29, 1457-1459 (1993). [CrossRef]
  17. I. Shoji, T. Taira, T. Taira, and A. Ikesue, "Thermally-induced-birefringence effects of highly Nd3+-doped Y3Al5O12 ceramic lasers," Opt. Mater. 29, 1271-1276 (2007). [CrossRef]
  18. R. Gaume, B. Viana, and D. Vivien, "A simple model for the prediction of thermal conductivity in pure and doped insulating crystals," Appl. Phys. Lett. 83, 1355-1357 (2003). [CrossRef]
  19. T.  Ogawa, Y.  Urata, S.  Wada, K.  Onodera, H.  Machida, H.  Sagae, M.  Higuch, and K.  Kodaira, "879nm-LD-pumped Nd:GdVO4 laser and its thermal property, " OSA Trends in Optics and Photonics  94, 293-297 (2004).
  20. A. I. Zagumennyi, V. A. Mikhailov, V. I. Vlasov, A. A. Sirotkin, V. I. Podreshetnikov, Yu. L. Kalachev, Yu. D. Zavartsev, S. A. Kutovoi, and I. A. Shcherbakov, "Diode-pumped lasers based on GdVO4 crystal," Laser Phys. 13, 311 (2003).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited