OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 12 — Jun. 9, 2008
  • pp: 9118–9131

Rotating soliton solutions in nonlocal nonlinear media

S. Skupin, M. Grech, and W. Królikowski  »View Author Affiliations

Optics Express, Vol. 16, Issue 12, pp. 9118-9131 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (288 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We discuss generic properties of rotating nonlinear wave solutions, the so called azimuthons, in nonlocal media. Variational methods allow us to derive approximative values for the rotating frequency, which is shown to depend crucially on the nonlocal response function. Further on, we link families of azimuthons to internal modes of classical non-rotating stationary solutions, namely vortex and multipole solitons. This offers an exhaustive method to identify azimuthons in a given nonlocal medium.

© 2008 Optical Society of America

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(190.4420) Nonlinear optics : Nonlinear optics, transverse effects in

ToC Category:
Nonlinear Optics

Original Manuscript: April 30, 2008
Revised Manuscript: May 29, 2008
Manuscript Accepted: May 30, 2008
Published: June 4, 2008

S. Skupin, M. Grech, and W. Królikowski, "Rotating soliton solutions in nonlocal nonlinear media," Opt. Express 16, 9118-9131 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. I. Stegeman and M. Segev, "Optical spatial solitons and their interactions: universality and diversity," Science 286, 1518-1523 (1999). [CrossRef]
  2. S. Kivshar and G. Agrawal, Optical Solitons: From Fibers to Photonic Crystals (Academic Press, San Diego, 2003).
  3. L. Berge, "Wave collapse in physics: principles and applications to light and plasma waves - weak turbulence, condensates and collapsing filaments in the nonlinear Schrödinger equation," Phys. Rep. 303, 259-370 (1998).
  4. Y. S. Kivshar and D. E. Pelinovsky, "Self-focusing and transverse instabilities of solitary waves," Phys. Rep. 331, 118-195 (2000). [CrossRef]
  5. V. I. Kruglov, Y. A. Logvin, and V. M. Volkov, "The theory of spitral laser beams in nonlinear media," J. Mod. Opt. 39, 2277-2291 (1992). [CrossRef]
  6. D. Skryabin and W. Firth, "Dynamics of self-trapped beams with phase dislocation in saturable Kerr and quadratic nonlinear media," Phys. Rev. E 58, 3916-3930 (1998). [CrossRef]
  7. D. Suter and T. Blasberg, "Stabilization of transverse solitary waves by a nonlocal response of the nonlinear medium," Phys. Rev. A 48, 4583-4587 (1993). [CrossRef] [PubMed]
  8. S. Skupin,W. Krolikowski, and M. Saffman, "Nonlocal stabilization of nonlinear beams in a self-focusing atomic vapor," Phys. Rev. Lett. 98, 263902 (2007). [CrossRef] [PubMed]
  9. A. G. Litvak, V. Mironov, G. Fraiman, and A. Yunakovskii, "Thermal self-effect of wave beams in plasma with a nonlocal nonlinearity," Sov. J. Plasma Phys. 1, 31-37 (1975).
  10. C. Rotschild, B. Alfassi, O. Cohen, and M. Segev, "Long-range interactions between optical solitons," Nature Phys. 2, 769-774 (2006). [CrossRef]
  11. G. Assanto and M. Peccianti, "Spatial solitons in nematic liquid crystals," IEEE J. Quantum Electron. 39, 13-21 (2003). [CrossRef]
  12. C. Conti, M. Peccianti, and G. Assanto, "Observation of optical spatial solitons in a highly nonlocal medium," Phys. Rev. Lett. 92, 113902 (2004). [CrossRef] [PubMed]
  13. M. Peccianti, A. Dyadyusha, M. Kaczmarek, and G. Assanto, "Tunable refraction and reflection of self-confined light beams," Nature Phys. 2, 737-742 (2006). [CrossRef]
  14. J. Denschlag, J. Simsarian, D. Feder, C. Clark, L. Collins, J. Cubizolles, L. Deng, E. Hagley, K. Helmerson, W. Reinhardt, S. Rolston, B. Schneider, and W. Phillips, "Generating solitons by phase engineering of a Bose-Einstein condensate," Science 287, 97-101 (2000). [CrossRef]
  15. P. Pedri and L. Santos, "Two-dimensional bright solitons in dipolar Bose-Einstein condensates," Phys. Rev. Lett. 95, 200404 (2005). [CrossRef] [PubMed]
  16. T. Koch, T. Lahaye, J. Metz, A. Frohlich, B. Griesmaier, and T. Pfau, "Stabilization of a purely dipolar quantum gas against collapse," Nature Phys. 4, 218-222 (2008). [CrossRef]
  17. W. Kr???olikowski, O. Bang, J. J. Rasmussen, and J. Wyller, "Modulational instability in nonlocal nonlinear Kerr media," Phys. Rev. E 64, 016612 (2001). [CrossRef]
  18. S. Turitsyn, "Spatial dispersion of nonlinearity and stability of multidimensional solitons," Theor. Math. Phys. 64, 797-801 (1985). [CrossRef]
  19. O. Bang, W. Krolikowski, J. Wyller, and J. J. Rasmussen, "Collapse arrest and soliton stabilization in nonlocal nonlinear media," Phys. Rev. E 66, 046619 (2002). [CrossRef]
  20. D. Briedis, D. Edmundson, O. Bang, and W. Krolikowski, "Ring vortex solitons in nonlocal nonlinear media," Opt. Express 13, 435-443 (2005). [CrossRef] [PubMed]
  21. A. I. Yakimenko, Y. A. Zaliznyak, and Y. S. Kivshar, "Stable vortex solitons in nonlocal self-focusing nonlinear media," Phys. Rev. E 71, 065603 (2005). [CrossRef]
  22. S. Skupin, O. Bang, D. Edmundson, and W. Krolikowski, "Stability of two-dimensional spatial solitons in nonlocal nonlinear media," Phys. Rev. E 73, 066603 (2006). [CrossRef]
  23. A. I. Yakimenko, V. M. Lashkin, and O. O. Prikhodko, "Dynamics of two-dimensional coherent structures in nonlocal nonlinear media," Phys. Rev. E 73, 066605 (2006). [CrossRef]
  24. Y. V. Kartashov, L. Torner, V. A. Vysloukh, and D. Mihalache, "Multipole vector solitons in nonlocal nonlinear media," Opt. Lett. 31, 1483-1485 (2006). [CrossRef] [PubMed]
  25. Y. V. Kartashov, V. A. Vysloukh, and L. Torner, "Stability of vortex solitons in thermal nonlinear media," Opt. Express 15, 9378-9384 (2007). [CrossRef] [PubMed]
  26. Yu. A. Zaliznyak, A. I. Yakimenko, "Three-dimensional solitons and vortices in dipolar Bose-Einstein condensates," Phys. Lett. A 372, 2862-2866 (2008). [CrossRef]
  27. S. Lopez-Aguayo, A. S. Desyatnikov, Y. S. Kivshar, S. Skupin, W. Krolikowski, and O. Bang, "Stable rotating dipole solitons in nonlocal optical media," Opt. Lett. 31, 1100-1102 (2006). [CrossRef] [PubMed]
  28. A. Desyatnikov, A. A. Sukhorukov, and Y. S. Kivshar, "Azimuthons: spatially modulated vortex solitons," Phys. Rev. Lett. 95, 203904 (2005). [CrossRef] [PubMed]
  29. P. Coullet, L. Gil, and F. Rocca, "Optical vortices," Opt. Commun. 73, 403-408 (1989). [CrossRef]
  30. A. S. Desyatnikov, Y. S. Kivshar, and L. Torner, "Optical vortices and vortex solitons," Prog. Optics 47, 291-391 (2005). [CrossRef]
  31. D. Buccoliero, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, "Spiraling multivortex solitons in nonlocal nonlinear media," Opt. Lett. 33, 198-200 (2008). [CrossRef] [PubMed]
  32. S. Lopez-Aguayo, A. S. Desyatnikov, and Y. S. Kivshar, "Azimuthons in nonlocal nonlinear media," Opt. Express 14, 7903-7908 (2006). [CrossRef] [PubMed]
  33. D. Buccoliero, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, "Laguerre and Hermite soliton clusters in nonlocal nonlinear media," Phys. Rev. Lett. 98, 053901 (2007). [CrossRef] [PubMed]
  34. E. G. Abramochkin and V. G. Volostnikov, "Generalized Gaussian beams," J. Opt. A. Pure. Appl. Opt. 6, S157- S161 (2004). [CrossRef]
  35. D. Skryabin, J. McSloy, and W. Firth, "Stability of spiralling solitary waves in Hamiltonian systems," Phys. Rev. E 66, 055602 (2002). [CrossRef]
  36. N. N. Rozanov, "On the Translational and Rotational Motion of Nonlinear Optical Structures as a Whole," Opt. Spectrosc. 96, 405-408 (2004). [CrossRef]
  37. D. Anderson, "Variational approach to nonlinear pulse propagation in optical fibers," Phys. Rev. A 27, 3135-3145 (1983). [CrossRef]
  38. D. Skryabin and A. Vladimirov, "Vortex Induced Rotation of clusters of localized states in the complex Ginzburg-Landau equation," Phys. Rev. Lett. 89, 044101 (2002). [CrossRef] [PubMed]
  39. N. Rosanov, S. Fedorov, and A. Shatsev, "Curvilinear motion of multivortex laser-soliton complexes with strong and weak coupling," Phys. Rev. Lett. 95, 053903 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (14527 KB)     
» Media 2: AVI (3680 KB)     
» Media 3: AVI (14996 KB)     
» Media 4: AVI (3808 KB)     
» Media 5: AVI (14656 KB)     
» Media 6: AVI (3705 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited