OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 12 — Jun. 9, 2008
  • pp: 9144–9154

Engineering the optical response of plasmonic nanoantennas

Holger Fischer and Olivier J. F. Martin  »View Author Affiliations


Optics Express, Vol. 16, Issue 12, pp. 9144-9154 (2008)
http://dx.doi.org/10.1364/OE.16.009144


View Full Text Article

Enhanced HTML    Acrobat PDF (320 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The optical properties of plasmonic dipole and bowtie nanoantennas are investigated in detail using the Green’s tensor technique. The influence of the geometrical parameters (antenna length, gap dimension and bow angle) on the antenna field enhancement and spectral response is discussed. Dipole and bowtie antennas confine the field in a volume well below the diffraction limit, defined by the gap dimensions. The dipole antenna produces a stronger field enhancement than the bowtie antenna for all investigated antenna geometries. This enhancement can reach three orders of magnitude for the smallest examined gap. Whereas the dipole antenna is monomode in the considered spectral range, the bowtie antenna exhibits multiple resonances. Furthermore, the sensitivity of the antennas to index changes of the environment and of the substrate is investigated in detail for biosensing applications; the bowtie antennas show slightly higher sensitivity than the dipole antenna.

© 2008 Optical Society of America

OCIS Codes
(140.4780) Lasers and laser optics : Optical resonators
(240.6680) Optics at surfaces : Surface plasmons
(260.3910) Physical optics : Metal optics
(260.5740) Physical optics : Resonance
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Optics at Surfaces

History
Original Manuscript: March 7, 2008
Revised Manuscript: May 25, 2008
Manuscript Accepted: May 30, 2008
Published: June 5, 2008

Virtual Issues
Vol. 3, Iss. 7 Virtual Journal for Biomedical Optics

Citation
Holger Fischer and Olivier J. F. Martin, "Engineering the optical response of plasmonic nanoantennas," Opt. Express 16, 9144-9154 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-12-9144


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. Gotschy, K. Vonmetz, A. Leitner, and F. R. Aussenegg, "Optical dichroism of lithographically designed silver nanoparticle films," Opt. Lett. 21, 1099 (1996). [CrossRef] [PubMed]
  2. S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, "Nanoengineering of optical resonances," Chem. Phys. Lett. 288, 243-247 (1998). [CrossRef]
  3. J. Kottmann, O. Martin, D. Smith, and S. Schultz, "Spectral response of plasmon resonant nanoparticles with a non-regular shape," Opt. Express 6, 213-219 (2000). [CrossRef] [PubMed]
  4. H. Ditlbacher, B. Lamprecht, A. Leitner, and F. R. Aussenegg, "Spectrally coded optical data storage by metal nanoparticles," Opt. Lett. 25, 563-565 (2000). [CrossRef]
  5. H. Tamaru, H. Kuwata, H. T. Miyazaki, and K. Miyano, "Resonant light scattering from individual Ag nanoparticles and particle pairs," Appl. Phys. Lett. 80, 1826-1828 (2002). [CrossRef]
  6. G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, "Plasmon dispersion relation of Au and Ag nanowires," Phys. Rev. B 68, 155427 (2003). [CrossRef]
  7. J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. Garc?a de Abajo, "Optical properties of gold nanorings," Phys. Rev. Lett. 90, 057401 (2003). [CrossRef] [PubMed]
  8. C. L. Nehl, H. Liao, and J. H. Hafner, "Optical properties of Star-Shaped Gold Nanoparticles," Nano Lett. 6, 683-688 (2006). [CrossRef] [PubMed]
  9. L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. VanDuyne, "Localized Surface Plasmon Resonance Spectroscopy of Single Silver Triangular Nanoprisms," Nano Lett. 6, 2060-2065 (2006). [CrossRef] [PubMed]
  10. H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, "Nanorice: A Hybrid Plasmonic Nanostructure," Nano Lett. 6, 827-832 (2006). [CrossRef] [PubMed]
  11. D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, "Gap-dependent Optical Coupling of Single "Bowtie" Nanoantennas Resonant in the Visible," Nano Lett. 4, 957-961 (2004). [CrossRef]
  12. P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant optical antennas," Science 308, 1607-1608 (2005). [CrossRef] [PubMed]
  13. S. Nie, and S. R. Emory, "Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering," Science 275, 1102-1106 (1997). [CrossRef] [PubMed]
  14. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, "Single molecule detection using Surface-Enhanced Raman Scattering (SERS)," Phys. Rev. Lett. 78, 1667 (1997). [CrossRef]
  15. H. Xu, E. J. Bjerneld, M. Käll, and L. Brjesson, "Spectroscopy of single hemoglobin molecules by Surface Enhanced Raman Scattering," Phys. Rev. Lett. 83, 4357 (1999). [CrossRef]
  16. N. Felidj, J. Aubard, G. Levi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Aussenegg, "Optimized surface-enhanced Raman scattering on gold nanoparticle arrays," Appl. Phys. Lett. 82, 3095-3097 (2003). [CrossRef]
  17. W. Zhang, X. Cui, B.-S. Yeo, T. Schmid, C. Hafner, and R. Zenobi, "Nanoscale roughness on metal surfaces can increase Tip-Enhanced Raman Scattering by an order of magnitude," Nano Lett. 7, 1401-1405 (2007). [CrossRef] [PubMed]
  18. L. Rogobete, F. Kaminski, M. Agio, and V. Sandoghdar, "Design of plasmonic nanoantennae for enhancing spontaneous emission," Opt. Lett. 32, 1623-1625 (2007). [CrossRef] [PubMed]
  19. T. H. Taminau, F. D. Stefani, F. B. Segerink and N. F. Van Hulst, "Optical antennas direct single-molecule emission," Nat. Photonics 2, 234-237 (2008). [CrossRef]
  20. S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, "Enhancement of single-molecule fluorescence using a Gold Nanoparticle as an Optical Nanoantenna," Phys. Rev. Lett. 97, 017402 (2006). [CrossRef] [PubMed]
  21. T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. vanHulst, "? /4 resonance of an Optical Monopole Antenna probed by Single Molecule Fluorescence," Nano Lett. 7, 28-33 (2007). [CrossRef] [PubMed]
  22. P. Bharadwaj and L. Novotny, "Spectral dependence of single molecule fluorescence enhancement," Opt. Express 15, 14266-14274 (2007). [CrossRef] [PubMed]
  23. F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, "Plasmonic enhancement of Molecular Fluorescence," Nano Lett. 7, 496-501 (2007). [CrossRef] [PubMed]
  24. J. N. Farahani, D. W. Pohl, H. J. Eisler, and B. Hecht, "Single Quantum Dot Coupled to a Scanning Optical Antenna: A Tunable Superemitter," Phys. Rev. Lett. 95, 017402-017404 (2005). [CrossRef] [PubMed]
  25. G. Lévêque and O. J. F. Martin, "Tunable composite nanoparticle for plasmonics," Opt. Lett. 31, 2750-2752 (2006). [CrossRef] [PubMed]
  26. K. H. Su, Q. H. Wei, and X. Zhang, "Tunable and augmented plasmon resonances of Au/SiO[sub 2]/Au nanodisks," Appl. Phys. Lett. 88, 063113-063118 (2006). [CrossRef]
  27. E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, "Plasmonic laser antenna," Appl. Phys. Lett. 89, 093120-093123 (2006). [CrossRef]
  28. J. Li, A. Salandrino, and N. Engheta, "Shaping light beams in the nanometer scale: A Yagi-Uda nanoantenna in the optical domain," Phys. Rev. B(Condensed Matter and Materials Physics) 76, 245403-245407 (2007). [CrossRef]
  29. Z. Jiasen, and X.W. Jing Yang, and Q. Gong, "Electric field enhancing properties of the V-shaped optical resonant antennas," Opt. Express 15, 16852-16859 (2007). [CrossRef]
  30. O. L. Muskens, and J. A. S.-G. V. Giannini, and J. Gómez Rivas, "Optical scattering resonances of single and coupled dimer plasmonic nanoantennas," Opt. Express 15, 17736-17746 (2008). [CrossRef]
  31. R. M. Bakker, and Z. L. Alexandra Boltasseva, R. H. Pedersen, S. Gresillon, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, "Near-field excitation of nanoantenna resonance," Opt. Express 15, 13682 (2007). [CrossRef] [PubMed]
  32. M. L. Brongersma, "Engineering optical nanoantennas," Nat. Photonics 2, 270-273 (2008). [CrossRef]
  33. A. Alu, and N. Engheta, "Tuning the scattering response of optical nanoantennas with nanocircuit loads," Nat. Photonics 2, 307-309 (2008). [CrossRef]
  34. J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, "Nanomechanical control of an optical antenna," Nat. Photonics 2, 230-233 (2008). [CrossRef]
  35. L. Wang, S. M. Uppuluri, E. X. Jin, and X. Xu, "Nanolithography using High Transmission Nanoscale Bowtie Apertures," Nano Lett. 6, 361-364 (2006). [CrossRef] [PubMed]
  36. A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, "Toward Nanometer-Scale Optical Photolithography: utilizing the Near-Field of Bowtie Optical Nanoantennas," Nano Lett. 6, 355-360 (2006). [CrossRef] [PubMed]
  37. P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, "Improving theMismatch between Light and Nanoscale Objects with Gold Bowtie Nanoantennas," Phys. Rev. Lett. 94, 017402-017404 (2005). [CrossRef] [PubMed]
  38. O. L. Muskens, V. Giannini, J. A. Sanchez-Gil, and J. Gómez Rivas, "Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas," Nano Lett. 7, 2871-2875 (2007). [CrossRef] [PubMed]
  39. R. M. Bakker, H.-K. Yuan, Z. Liu, V. Drachev, A. V. Kildishev, V. M. Shalaev, R. H. Pedersen, S. Gresillon, and A. Boltasseva, "Enhanced localized fluorescence in plasmonic nanoantennae," Appl. Phys. Lett. 92, 043101 (2008). [CrossRef]
  40. O. J. F. Martin, and N. B. Piller, "Electromagnetic scattering in polarizable backgrounds," Phys. Rev. E 58, 3909-3915 (1998). [CrossRef]
  41. M. Paulus, P. Gay-Balmaz, and O. J. F. Martin, "Accurate and efficient computation of the Green??s tensor for stratified media," Phys. Rev. E 62, 5797-5807 (2000). [CrossRef]
  42. M. Paulus, and O. J. F. Martin, "Light propagation and scattering in stratified media: a Green??s tensor approach," J. Opt. Soc. Am. A 18, 854-861 (2001). [CrossRef]
  43. P. B. Johnson, and R. W. Christy, "Optical Constants of the Noble Metals," Phys. Rev. B 6, 4370-4379 (1972). [CrossRef]
  44. J. P. Kottmann, and O. J. F. Martin, "Accurate solution of the volume integral equation for high-permittivity scatterers," IEEE Trans. Antennas Propag. 48, 1719-1726 (2000). [CrossRef]
  45. P. Gay-Balmaz, and O. J. F. Martin, "Validity domain and limitation of non-retarded Green??s tensor for electromagnetic scattering at surfaces," Opt. Commun. 184, 37-47 (2000). [CrossRef]
  46. J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, "Plasmon resonances of silver nanowires with a nonregular cross section," Phys. Rev. B 64, 235402/235401-235410 (2001). [CrossRef]
  47. J. P. Kottmann, and O. J. F. Martin, "Plasmon resonant coupling in metallic nanowires," Opt. Express. 8, 655-663 (2001). [CrossRef] [PubMed]
  48. W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, "Optical properties of two interacting gold nanoparticles," Opt. Commun. 220, 137-141 (2003). [CrossRef]
  49. C. A. Balanis, Antenna Theory: Analysis and Design (Wiley-Interscience, Hoboken, NJ, 2005).
  50. L. Novotny, "Effective Wavelength Scaling for Optical Antennas," Phys. Rev. Lett. 98, 266802-266804 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: MOV (436 KB)     
» Media 2: MOV (1516 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited