OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 12 — Jun. 9, 2008
  • pp: 9155–9164

Surface-emitting circular DFB, disk-, and ring-Bragg resonator lasers with chirped gratings: a unified theory and comparative study

Xiankai Sun and Amnon Yariv  »View Author Affiliations


Optics Express, Vol. 16, Issue 12, pp. 9155-9164 (2008)
http://dx.doi.org/10.1364/OE.16.009155


View Full Text Article

Enhanced HTML    Acrobat PDF (1375 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have developed a theory that unifies the analysis of the modal properties of surface-emitting chirped circular grating lasers. This theory is based on solving the resonance conditions which involve two types of reflectivities of chirped circular gratings. This approach is shown to be in agreement with previous derivations which use the characteristic equations. Utilizing this unified analysis, we obtain the modal properties of circular DFB, disk-, and ring- Bragg resonator lasers. We also compare the threshold gain, single mode range, quality factor, emission efficiency, and modal area of these types of circular grating lasers. It is demonstrated that, under similar conditions, disk Bragg resonator lasers have the highest quality factor, the highest emission efficiency, and the smallest modal area, indicating their suitability in low-threshold, high-efficiency, ultracompact laser design, while ring Bragg resonator lasers have a large single mode range, high emission efficiency, and large modal area, indicating their suitability for high-efficiency, large-area, high-power applications.

© 2008 Optical Society of America

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(130.0130) Integrated optics : Integrated optics
(130.2790) Integrated optics : Guided waves
(140.5960) Lasers and laser optics : Semiconductor lasers
(230.1480) Optical devices : Bragg reflectors
(250.7270) Optoelectronics : Vertical emitting lasers

ToC Category:
Optoelectronics

History
Original Manuscript: March 10, 2008
Revised Manuscript: June 3, 2008
Manuscript Accepted: June 3, 2008
Published: June 5, 2008

Citation
Xiankai Sun and Amnon Yariv, "Surface-emitting circular DFB, disk- and ring- Bragg resonator lasers with chirped gratings: a unified theory and comparative study," Opt. Express 16, 9155-9164 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-12-9155


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. A. Shakir, T. C. Salvi, and G. C. Dente, "Analysis of Grating-Coupled Surface-Emitting Lasers," Opt. Lett. 14, 937-939 (1989). [CrossRef] [PubMed]
  2. D. F. Welch, R. Parke, A. Hardy, W. Streifer, and D. R. Scifres, "Low-Threshold Grating-Coupled Surface-Emitting Lasers," Appl. Phys. Lett. 55, 813-815 (1989). [CrossRef]
  3. R. Parke, R. Waarts, D. F. Welch, A. Hardy, and W. Streifer, "High-Efficiency, High Uniformity, Grating Coupled Surface Emitting Lasers," Electron. Lett. 26, 125-127 (1990). [CrossRef]
  4. T. Kjellberg, M. Hagberg, N. Eriksson, and A. G. Larsson, "Low-Threshold Grating-Coupled Surface-Emitting Lasers with Etch-Stop Layer for Precise Grating Positioning," IEEE Photon. Technol. Lett. 5, 1149-1152 (1993). [CrossRef]
  5. F. S. Choa, M. H. Shih, J. Y. Fan, G. J. Simonis, P. L. Liu, T. Tanbunek, R. A. Logan, W. T. Tsang, and A. M. Sergent, "Very Low Threshold 1.55 ?m Grating-Coupled Surface-Emitting Lasers for Optical Signal Processing and Interconnect," Appl. Phys. Lett. 67, 2777-2779 (1995). [CrossRef]
  6. R. G. Waarts, "Optical Characterization of Grating Surface Emitting Semiconductor Lasers," Appl. Opt. 29, 2718-2721 (1990). [CrossRef] [PubMed]
  7. T. Erdogan and D. G. Hall, "Circularly symmetric distributed feedback semiconductor lasers: An analysis," J. Appl. Phys. 68, 1435-1444 (1990). [CrossRef]
  8. C. Wu, M. Svilans, M. Fallahi, T. Makino, J. Glinski, C. Maritan, and C. Blaauw, "Optical Pumped Surface-Emitting DFB GaInAsP/InP Lasers with Circular Grating," Electron. Lett. 27, 1819-1821 (1991). [CrossRef]
  9. T. Erdogan, O. King, G. W. Wicks, D. G. Hall, E. H. Anderson, and M. J. Rooks, "Circularly symmetric operation of a concentric-circle-grating, surface-emitting, AlGaAs/GaAs quantum-well semiconductor laser," Appl. Phys. Lett. 60, 1921-1923 (1992). [CrossRef]
  10. C. Wu, M. Svilans, M. Fallahi, I. Templeton, T. Makino, J. Glinski, R. Maciejko, S. I. Najafi, C. Maritan, C. Blaauw, and G. Knight, "Room temperature operation of electrically pumped Surface-Emitting Circular Grating DBR Laser," Electron. Lett. 28, 1037-1039 (1992). [CrossRef]
  11. C. Wu, T. Makino, M. Fallahi, R. G. A. Craig, G. Knight, I. Templeton, and C. Blaauw, "Novel Circular Grating Surface-Emitting Lasers with Emission from Center," Jpn. J. Appl. Phys. 33-Pt. 2, L427-L429 (1994). [CrossRef]
  12. R. H. Jordan, D. G. Hall, O. King, G. W. Wicks, and S. Rishton, "Lasing behavior of circular grating surface-emitting semiconductor lasers," J. Opt. Soc. Am. B 14, 449-453 (1997). [CrossRef]
  13. C. Olson, P. L. Greene, G. W. Wicks, D. G. Hall, and S. Rishton, "High-order azimuthal spatial modes of concentric-circle-grating surface-emitting semiconductor lasers," Appl. Phys. Lett. 72, 1284-1286 (1998). [CrossRef]
  14. K. J. Kasunic and E. M. Wright, "Nonlinear dynamics of circular-grating distributed-feedback semiconductor devices," J. Opt. Soc. Am. B 16, 96-102 (1999). [CrossRef]
  15. A. M. Shams-Zadeh-Amiri, X. Li, and W.-P. Huang, "Above-Threshold Analysis of Second-Order Circular-Grating DFB Lasers," IEEE J. Quantum Electron. 36, 259-267 (2000). [CrossRef]
  16. C. Bauer, H. Giessen, B. Schnabel, E.-B. Kley, C. Schmitt, and U. Scherf, "A Surface-Emitting Circular Grating Polymer Laser," Adv. Mater. 13, 1161-1164 (2001). [CrossRef]
  17. P. L. Greene and D. G. Hall, "Effects of Radiation on Circular-Grating DFB Lasers??????Part I: Coupled-Mode Equations," IEEE J. Quantum Electron. 37, 353-364 (2001). [CrossRef]
  18. P. L. Greene and D. G. Hall, "Effects of Radiation on Circular-Grating DFB Lasers??????Part II: Device and Pump-Beam Parameters," IEEE J. Quantum Electron. 37, 364-371 (2001). [CrossRef]
  19. A. M. Shams-Zadeh-Amiri, X. Li, and W. P. Huang, "Hankel transform-domain analysis of scattered fields in multilayer planar waveguides and lasers with circular gratings," IEEE J. Quantum Electron 39, 1086-1098 (2003). [CrossRef]
  20. G. F. Barlow, A. Shore, G. A. Turnbull, and I. D. W. Samuel, "Design and analysis of a low-threshold polymer circular-grating distributed-feedback laser," J. Opt. Soc. Am. B 21, 2142-2150 (2004). [CrossRef]
  21. W. M. J. Green, J. Scheuer, G. DeRose, and A. Yariv, "Vertically emitting annular Bragg lasers using polymer epitaxial transfer," Appl. Phys. Lett. 85, 3669-3671 (2004). [CrossRef]
  22. A. Jebali, R. F. Mahrt, N. Moll, D. Erni, C. Bauer, G.-L. Bona, and W. Bachtold, "Lasing in organic circular grating structures," J. Appl. Phys. 96, 3043-3049 (2004). [CrossRef]
  23. J. Scheuer, W. M. J. Green, G. DeRose, and A. Yariv, "Low-threshold two-dimensional annular Bragg lasers," Opt. Lett. 29, 2641-2643 (2004). [CrossRef] [PubMed]
  24. J. Scheuer, W. M. J. Green, G. A. DeRose, and A. Yariv, "Lasing from a circular Bragg nanocavity with an ultrasmall modal volume," Appl. Phys. Lett. 86, 251101 (2005). [CrossRef]
  25. G. A. Turnbull, A. Carleton, G. F. Barlow, A. Tahraouhi, T. F. Krauss, K. A. Shore, and I. D. W. Samuel, "Influence of grating characteristics on the operation of circular-grating distributed-feedback polymer lasers," J. Appl. Phys. 98, 023105 (2005). [CrossRef]
  26. G. A. Turnbull, A. Carleton, A. Tahraouhi, T. F. Krauss, I. D. W. Samuel, G. F. Barlow, and K. A. Shore, "Effect of gain localization in circular-grating distributed feedback lasers," Appl. Phys. Lett. 87, 201101 (2005). [CrossRef]
  27. R. Coccioli, M. Boroditsky, K. W. Kim, Y. Rahmat-Samii, and E. Yablonovitch, "Smallest possible electromagnetic mode volume in a dielectric cavity," IEE Proc.:Optoelectron. 145, 391-397 (1998). [CrossRef]
  28. E. A. J. Marcatili, "Bends in Optical Dielectric Guides," Bell Syst. Tech. J. 48, 2103-2132 (1969).
  29. J. Scheuer and A. Yariv, "Coupled-Waves approach to the design and analysis of Bragg and Photonic Crystal Annual Resonators," IEEE J. Quantum Electron. 39, 1555-1562 (2003). [CrossRef]
  30. J. Scheuer and A. Yariv, "Annular Bragg defect mode resonators," J. Opt. Soc. Am. B 20, 2285-2291 (2003). [CrossRef]
  31. X. K. Sun, J. Scheuer, and A. Yariv, "Optimal design and reduced threshold in vertically emitting circular Bragg disk resonator lasers," IEEE J. Sel. Top. Quantum Electron. 13, 359-366 (2007). [CrossRef]
  32. X. K. Sun and A. Yariv, "Modal properties and modal control in vertically emitting annular Bragg lasers," Opt. Express 15, 17323-17333 (2007). [CrossRef] [PubMed]
  33. R. F. Kazarinov and C. H. Henry, "Second-Order distributed feedback lasers with mode selection provided by first-order radiation losses," IEEE J. Quantum Electron. QE-21, 144-150 (1985). [CrossRef]
  34. A. Jebali, D. Erni, S. Gulde, R. F. Mahrt, and W. Bachtold, "Analytical calculation of the Q factor for circular-grating microcavities," J. Opt. Soc. Am. B 24, 906-915 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited