OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 12 — Jun. 9, 2008
  • pp: 9165–9172

Fabrication of two-layer integrated phase mask for single-beam and single-exposure fabrication of three-dimensional photonic crystal

Yuankun Lin, Ahmad Harb, Daniel Rodriguez, Karen Lozano, Di Xu, and K. P. Chen  »View Author Affiliations

Optics Express, Vol. 16, Issue 12, pp. 9165-9172 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (680 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, we report a new design and fabrication of an integrated two-layer phase mask for five-beam holographic fabrication of three-dimensional photonic crystal templates. The phase mask consists of two layers of orthogonally oriented gratings produced in a polymer. The vertical spatial separation between two layers produces a phase shift among diffractive laser beams, which enables the holographic fabrication of inter-connected three-dimensional photonic structures. A three-dimensional photonic crystal template was fabricated using the two-layer phase mask and was consistent with simulations based on the five beam interference. The reported method simplifies the fabrication of photonic crystals and is amendable for massive production and chip-scale integration of three-dimensional photonic structures.

© 2008 Optical Society of America

OCIS Codes
(090.0090) Holography : Holography
(110.5220) Imaging systems : Photolithography
(220.4000) Optical design and fabrication : Microstructure fabrication
(260.3160) Physical optics : Interference

ToC Category:

Original Manuscript: May 5, 2008
Revised Manuscript: May 23, 2008
Manuscript Accepted: June 3, 2008
Published: June 5, 2008

Yuankun Lin, Ahmad Harb, Daniel Rodriguez, Karen Lozano, Di Xu, and K. P. Chen, "Fabrication of two-layer integrated phase mask for single-beam and single-exposure fabrication of three-dimensional photonic crystal," Opt. Express 16, 9165-9172 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987). [CrossRef]
  2. E. Yablonovitch, "Inhibited spontaneous emission in Solid-State Physics and Electronics," Phys. Rev. Lett. 58, 2059-2062 (1987). [CrossRef]
  3. J. D. Joannopoulos, P. R. Villeneuve, and S. H. Fan, "Photonics crystals: putting a new twist on light," Nature (London) 386, 143-147 (1997). [CrossRef]
  4. K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, "Photonic band gaps in three dimensions: New layer-by-layer periodic structures," Solid State Commun. 89, 413-416 (1994). [CrossRef]
  5. A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, P. Jessica, G. A. Ozin, A. Geoffrey, O. Toader, and H. M. van Driel, "Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometers," Nature (London) 405, 437-440 (2000). [CrossRef] [PubMed]
  6. M. Deubel, G. V. Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, "Direct laser writing of three-dimensional photonic-crystal templates for telecommunications," Nat. Mater. 3, 444-447 (2004). [CrossRef] [PubMed]
  7. V. Berger, O. Gauthier-Lafaye, and E. Costard, "Photonic band gaps and holography," J. Appl. Phys. 82, 60-64 (1997). [CrossRef]
  8. M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, "Fabrication of photonic crystals for the visible spectrum by holographic lithography," Nature (London) 404, 53-56 (2000). [CrossRef] [PubMed]
  9. S. Yang, M. Megens, J. Aizenberg, P. Wiltzius, P. M. Chaikin, and W. B. Russel, "Creating periodic three-dimensional structures by multibeam interference of visible laser," Chem. Mater. 14, 2831-2833 (2002). [CrossRef]
  10. O. Toader, T. Y. M. Chan, and S. John, "Photonic band gap architectures for holographic lithography," Phys. Rev. Lett.  92, 043905/1-4 (2004). [CrossRef] [PubMed]
  11. D. N. Sharp, A. J. Turberfield, and R. G. Denning, "Holographic photonic crystals with diamond symmetry," Phys. Rev. B 68, 205102-6 (2003). [CrossRef]
  12. N. D. Lai, W. P. Liang, J. H. Lin, C. C. Hsu, and C. H. Lin, "Fabrication of two- and three-dimensional periodic structures by multi-exposure of two-beam interference technique," Opt. Express 13, 9605-9611 (2005). [CrossRef] [PubMed]
  13. M. J. Escuti, J. Qi, and G. P. Crawford, "Tunable face-centered-cubic photonic crystal formed in holographic polymer dispersed liquid crystals," Opt. Lett. 28, 522-524 (2003). [CrossRef] [PubMed]
  14. Y. K. Pang, J. C. Wai Lee, H. F. Lee, W. Y. Tam, C. T. Chan, and P. Sheng, "Chiral microstructures (spirals) fabrication by holographic lithography," Opt. Express 13, 7615-7620 (2005). [CrossRef] [PubMed]
  15. I. Divliansky, T. S. Mayer, K. S. Holliday, and V. H. Crespi, "Fabrication of three-dimensional polymer photonic crystal structures using single diffraction element interference lithography," Appl. Phys. Lett. 82, 1667-1669 (2003). [CrossRef]
  16. S.  Jeon, J.-U.  Park, R.  Cirelli, S.  Yang, C. E.  Heitzman, P. V.  Braun, P. J. A.  Kenis, and J. A.  Rogers, "Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks," PNAS  101, 12429 -12434 (2004). [CrossRef]
  17. Y. Lin, P. R. Herman, and E. L. Abolghasemi, "Proposed single-exposure holographic fabrication of microsphere-type photonic crystal through phase mask techniques," J. Appl. Phys.  97, 096102/1-3 (2005). [CrossRef]
  18. Y. Lin, P. R. Herman, and K. Darmawikarta, "Design and holographic fabrication of tetragonal and cubic photonic crystals with phase mask: toward the mass-production of three-dimensional photonic crystals," Appl. Phys. Lett.  86, 071117/1-3 (2005). [CrossRef]
  19. D. Chanda, L. Abolghasemi, and P. R. Herman, "One-dimensional diffractive optical element based fabrication and spectral characterization of three-dimensional photonic crystal templates," Opt. Express 14, 8568-8577 (2006). [CrossRef] [PubMed]
  20. D. Chanda and P. R. Herman, "Phase tunable multilevel diffractive optical element based single laser exposure fabrication of three-dimensional photonic crystal templates," Appl. Phys. Lett.  91, 061122/1-3 (2007). [CrossRef]
  21. T. Y. M. Chan, O. Toader, and S. John, "Photonic band-gap formation by optical-phase-mask lithography," Phys. Rev. E 73, 046610 (2006). [CrossRef]
  22. Y. Lin, D. Rivera, Z. Pole, and K. P. Chen, "Five-beam interference pattern controlled through phases and wavevectors for diamond like photonic crystal," Appl. Opt. 45, 7971-7976 (2006). [CrossRef] [PubMed]
  23. Y. K. Pang, J. C. Lee, C. T. Ho, and W. Y. Tam, "Realization of woodpile structure using optical interference holography," Opt. Express 14, 9113-9119 (2006). [CrossRef] [PubMed]
  24. H. Miguez, N. Tetreault, B. Hatton, S. M. Yang, D. Perovic, and G. A. Ozin, "Mechanical stability enhancement by pore size and connectivity control in colloidal crystals by layer-by-layer growth of oxide," Chem. Commun. (Cambridge) 22, 2736-2737 (2002). [CrossRef]
  25. N. Tereault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Perez-Willard, S. John, M. Wegener, and G. A. Ozin, "New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates," Adv. Mater. 18, 457-460 (2006). [CrossRef]
  26. Y. Lin and P. R. Herman, "Effect of structural variation on the photonic band gap in woodpile photonic crystal with body-centered-cubic symmetry," J. Appl. Phys.  98, 063104/4 (2005). [CrossRef]
  27. O. Toader, T. Chan, and S. John, "Photonic band gap synthesis by holographic lithography," Phys. Rev. Lett.  92, 043905/4 (2004). [CrossRef] [PubMed]
  28. R. Jakubiak, L. V. Natarajan, V. Tondiglia, G. S. He, P. N. Prasad, T. J. Bunning and R. A. Vaia, "Electrically switchable lasing from pyrromethene 597 embedded holographic-polymer dispersed liquid crystals," Appl. Phys. Lett. 85, 6095-6097 (2004). [CrossRef]
  29. V. P. Tondiglia, L. V. Natarajan, R. L. Sutherland, D. Tomlin, and T. J. Bunning, "Holographic formation of Electro-Optical Polymer-Liquid Crystal Photonic Crystals," Adv. Mater. 14, 187-191 (2002). [CrossRef]
  30. S. Peng and G. M. Morris, "Efficient implementation of rigorous coupled-wave analysis for surface-relief gratings," J. Opt. Soc. Am. A 12, 1087-1096 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited