OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 12 — Jun. 9, 2008
  • pp: 9222–9238

Universal optical transmission features in periodic and quasiperiodic hole arrays

Domenico Pacifici, Henri J. Lezec, Luke A. Sweatlock, Robert J. Walters, and Harry A. Atwater  »View Author Affiliations


Optics Express, Vol. 16, Issue 12, pp. 9222-9238 (2008)
http://dx.doi.org/10.1364/OE.16.009222


View Full Text Article

Enhanced HTML    Acrobat PDF (984 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate the influence of array order in the optical transmission properties of subwavelength hole arrays, by comparing the experimental spectral transmittance of periodic and quasiperiodic hole arrays as a function of frequency. We find that periodicity and long-range order are not necessary requirements for obtaining enhanced and suppressed optical transmission, provided short-range order is maintained. Transmission maxima and minima are shown to result, respectively, from constructive and destructive interference at each hole, between the light incident upon and exiting from a given hole, and surface plasmon polaritons (SPPs) arriving from individual neighboring holes. These SPPs are launched along both illuminated and exit surfaces, by diffraction of the incident and emerging light at the neighboring individual subwavelength holes. By characterizing the optical transmission of a pair of subwavelength holes as a function of hole-hole distance, we demonstrate that a subwavelength hole can launch SPPs with an efficiency up to 35%, and with an experimentally determined launch phase φ=π/2, for both input-side and exit-side SPPs. This characteristic phase has a crucial influence on the shape of the transmission spectra, determining transmission minima in periodic arrays at those frequencies where grating coupling arguments would instead predict maxima.

© 2008 Optical Society of America

OCIS Codes
(050.1220) Diffraction and gratings : Apertures
(050.1950) Diffraction and gratings : Diffraction gratings
(240.6680) Optics at surfaces : Surface plasmons
(260.1960) Physical optics : Diffraction theory
(260.3160) Physical optics : Interference

ToC Category:
Diffraction and Gratings

History
Original Manuscript: March 25, 2008
Revised Manuscript: May 28, 2008
Manuscript Accepted: May 28, 2008
Published: June 6, 2008

Citation
Domenico Pacifici, Henri J. Lezec, Luke A. Sweatlock, Robert J. Walters, and Harry A. Atwater, "Universal optical transmission features in periodic and quasiperiodic hole arrays," Opt. Express 16, 9222-9238 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-12-9222


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. A. Bethe, "Theory of diffraction by small holes," Phys. Rev. 66, 163-182 (1944). [CrossRef]
  2. C. J. Bouwkamp, "On Bethe???s theory of diffraction by small holes," Philips Res. Rep. 5, 321-332 (1950).
  3. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and H. J. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998). [CrossRef]
  4. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779-6782 (1998). [CrossRef]
  5. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Tracts in Mod. Phys., Vol. 111, New York, 1988).
  6. M. M. J. Treacy, "Dynamical diffraction in metallic optical gratings," Appl. Phys. Lett. 75, 606-608 (1999). [CrossRef]
  7. M. M. J. Treacy, "Dynamical diffraction explanation of the anomalous transmission of light through metallic gratings," Phys. Rev. B 66, 195105 (2002). [CrossRef]
  8. H. J. Lezec and T. Thio, "Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays," Opt. Express 12, 3629-3651 (2004). [CrossRef] [PubMed]
  9. S.-H. Chang, S. K. Gray, and G. C. Schatz, "Surface plasmon generation and light transmission by isolated nanoholes and arrays of nanoholes in thin metal films," Opt. Express 13, 3150-3165 (2005). [CrossRef] [PubMed]
  10. Y. Xie, A. R. Zakharian, J. V. Moloney, and M. Mansuripur, "Transmission of light through a periodic array of slits in a thick metallic film," Opt. Express 13, 4485-4491 (2005). [CrossRef] [PubMed]
  11. M. Sun, J. Tian, Z.-Y. Li, B.-Y. Cheng, D.-Z. Zhang, A.-Z. Jin, and H.-F. Yang, "The role of periodicity in enhanced transmission through subwavelength hole arrays," Chin. Phys. Lett. 23, 486-488 (2006). [CrossRef]
  12. T. Matsui, A. Agrawal, A. Nahata, and Z. V. Vardeny, "Transmission resonances through aperiodic arrays of subwavelength apertures," Nature 446, 517-521 (2007). [CrossRef] [PubMed]
  13. F. Przybilla, C. Genet, and T. W. Ebbesen, "Enhanced transmission through Penrose subwavelength hole arrays," Appl. Phys. Lett. 89, 121115 (2006). [CrossRef]
  14. G. Gay, O. Alloschery, B. Viaris de Lesegno, C. O???Dwyer, J. Weiner, and H. J. Lezec, "The optical response of nanostructured surfaces and the composite diffracted evanescent wave model," Nature Phys. 2, 262-267 (2006). [CrossRef]
  15. G. Gay, O. Alloschery, B. Viaris de Lesegno, J. Weiner, and H. J. Lezec, "Surface wave generation and propagation on metallic subwavelength structures measured by far-field interferometry," Phys. Rev. Lett. 96, 213901 (2006). [CrossRef] [PubMed]
  16. D. Pacifici, H. J. Lezec, and H. A. Atwater, "All-optical modulation by plasmonic excitation of CdSe quantum dots," Nature Photon. 1, 402-406 (2007). [CrossRef]
  17. F. Kalkum, G. Gay, O. Alloschery, J. Weiner, H. J. Lezec, Y. Xie, and M. Mansuripur, "Surface-wave interferometry on single subwavelength slit-groove structures fabricated on gold films," Opt. Express 15, 2613-2621 (2007). [CrossRef] [PubMed]
  18. D. Pacifici, H. J. Lezec, H. A. Atwater, and J. Weiner, "Quantitative determination of optical transmission through subwavelength slit arrays in Ag films: role of surface wave interference and local coupling between adjacent slits," Phys. Rev. B 77, 115411 (2008). [CrossRef]
  19. A.-L. Baudrion, F. de Leon-Perez, O. Mahboub, A. Hohenau,  et al., "Coupling efficiency of light to surface plasmon polariton for single subwavelength holes in a gold film," Opt. Express 16, 3420-3429 (2008). [CrossRef] [PubMed]
  20. N. G. de Bruijn, "Algebraic theory of Penrose???s non-periodic tilings of the plane. I-II," Mathematics Proc. A 84, 39-66 (1981).
  21. O. T. A. Janssen, H. P. Urbach, G. W. 't Hooft, "On the phase of plasmons excited by slits in a metal film," Opt. Express 14, 11823-11832 (2006). [CrossRef] [PubMed]
  22. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002). [CrossRef] [PubMed]
  23. P. Lalanne, J. P. Hugonin, and J. C. Rodier, "Approximate model for surface-plasmon generation at slit apertures," J. Opt. Soc. Am. A 23, 1608-1615 (2006). [CrossRef]
  24. G. Leveque, O. J. F. Martin, and J. Weiner, "Transient behavior of surface plasmon polaritons scattered at a subwavelength groove," Phys. Rev. B 76, 155418 (2007). [CrossRef]
  25. F. J. García de Abajo, "Colloquium: Light scattering by particle and hole arrays," Rev. Mod. Phys. 79, 1267-1290 (2007). [CrossRef]
  26. C. Genet, M. P. van Exter, and J. P. Woerdman, "Huygens description of resonance phenomena in subwavelength hole arrays," J. Opt. Soc. Am. A 22, 998-1002 (2005). [CrossRef]
  27. H. Gao, J. Henzie, and T. W. Odom, "Direct evidence for surface plasmon-mediated enhanced light transmission through metallic nanohole arrays," Nano Lett. 6, 2104-2108 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited