OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 13 — Jun. 23, 2008
  • pp: 9365–9371

Epitaxially-grown Ge/Si avalanche photodiodes for 1.3µm light detection

Y. Kang, M. Zadka, S. Litski, G. Sarid, M. Morse, M. J. Paniccia, Y. -H. Kuo, J. Bowers, A. Beling, H. -D. Liu, D. C. McIntosh, J. Campbell, and A. Pauchard  »View Author Affiliations

Optics Express, Vol. 16, Issue 13, pp. 9365-9371 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (113 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We designed and fabricated Ge/Si avalanche photodiodes grown on silicon substrates. The mesa-type photodiodes exhibit a responsivity at 1310nm of 0.54A/W, a breakdown voltage thermal coefficient of 0.05%/°C, a 3dBbandwidth of 10GHz. The gain-bandwidth product was measured as 153GHz. The effective k value extracted from the excess noise factor was 0.1.

© 2008 Optical Society of America

OCIS Codes
(060.2330) Fiber optics and optical communications : Fiber optics communications
(040.1345) Detectors : Avalanche photodiodes (APDs)

ToC Category:

Original Manuscript: February 25, 2008
Revised Manuscript: April 21, 2008
Manuscript Accepted: June 2, 2008
Published: June 11, 2008

Virtual Issues
Vol. 3, Iss. 7 Virtual Journal for Biomedical Optics

Y. Kang, M. Zadka, S. Litski, G. Sarid, M. Morse, M. J. Paniccia, Y. -H. Kuo, J. Bowers, A. Beling, H. -D. Liu, D. C. McIntosh, J. Campbell, and A. Pauchard, "Epitaxially-grown Ge/Si avalanche photodiodes for 1.3 μm light detection," Opt. Express 16, 9365-9371 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Capasso, W. T. Tsang, A. L. Hutchinson, and G. F. Williams, "The superlattice photodetector a new avalanche photodiode with a large ionization rates ratio," Tech. Dig. Int. Electron Devices Meet. 27, 284-287 (1981).
  2. S. Wang, R. Sidhu, X. G. Zheng, X. Li, X. Sun, A. L. Holmes, Jr., and J. C. Campbell, "Low-noise avalanche photodiodes with graded impact-ionization-engineered multiplication region," IEEE Photon. Technol. Lett. 13, 1346-1348 (2001). [CrossRef]
  3. J. C. Campbell, H. Nie, C. Lenox, G. Kinsey, P. Yuan, A. L. Holmes, and B. G. Streetman, "High-speed, low-noise avalanche photodiodes," Optical Fiber Communication Conference, Technical Digest Postconference Edition 37, 114-116 (2000).
  4. R. P. Webb, R. J. McIntyre, and J. Conradi, "Properties of avalanche photodiodes," RCA Rev. 35, 234-278 (1974).
  5. A. R. Hawkins, W. Wu, P. Abraham, K. Streubel, and J. E. Bowers, "High Gain-Bandwidth-Product Silicon Heterointerface Photodetector," Appl. Phys. Lett. 70, 303-305 (1996). [CrossRef]
  6. Y. Kang, P. Mages, A. R. Clawson, P. K. L. Yu, M. Bitter, Z. Pan, A. Pauchard, S. Hummel, and Y.H. Lo, "Fused InGaAs/Si Avalanche Phototodiodes With Low noise Performance," IEEE Photon. Technol. Lett. 14, 1593-1595 (2002). [CrossRef]
  7. M. Morse, O. Dosunmu, G. Sarid, and Y. Chetrit, "Performance of Ge-on-Si p-i-n Photodetectors for Standard Receiver Modules," Proceeding of SiGe and Ge: Materials, Processing, and Devices 3, 75-84 (2006).
  8. Z. Huang, N. Kong, X. Guo, M. Liu, N. Duan, A. L. Beck, S. K. Banerjee, and J. C. Campbell, "21-GHz-bandwidth germanium-on-silicon photodiode using thin SiGe buffer layers," IEEE J. Sel. Top. in Quantum Electron. 12, 1450-1454 (2006). [CrossRef]
  9. R. G. Smith and S. R. Forrest, "Sensitivity of avalanche photodetector receivers for long-wavelength optical communications," Bell System Tech. J. 61, 2929-2945 (1982).
  10. T. R. Refaat, M. N. Abedin, and U. N. Singh, "Comparison between Ge and InGaAs APDs in the 1 to 2 ?m wavelength range," Proceeding of 2005 Quantum Electronics and Laser Science Conference (QELS), 1997-1999 (2005).
  11. Z. Huang, J. Oh, Banerjee, S. K. Banerjee, and J. C. Campbell "Effectiveness of SiGe buffer layers in reducing dark currents of Ge-on-Si photodetectors,"IEEE J. Quantum Electron. 43, 238-242 (2007). [CrossRef]
  12. C. L. F. Ma, M. J. Dean, L. E. Tarof, and J. C. H. Yu, "Temperature dependence of breakdown voltages in separate absorption, grading, charge, and multiplication InP/InGaAs avalanche photodiodes," IEEE Trans. Electron. Devices. 42, 810-818 (1995). [CrossRef]
  13. K.-S. Hyun and C. -Y. Park, "Breakdown characteristics in InP/InGaAs avalanche photodiode with p-i-n multiplication layer structure," J. Appl. Phys. 81, 974-984 (1997). [CrossRef]
  14. M. Ershov and V. Ryzhii "Temperature dependence of the electron impact ionization coefficient in silicon," Semicond. Sci. Technol. 10, 138-42 (1995). [CrossRef]
  15. Y. K. Su, C. Y. Chang, and T. S. Wu, "Temperature dependent characteristics of a PIN avalanche photodiode(APD) in Ge, Si and GaAs," Opt. Quantum Electron. 11, 109-117 (1979). [CrossRef]
  16. D. J. Massey, J. P. R. David, and G. J. Rees, "Temperature dependence of impact ionization in submicrometer silicon devices," IEEE Trans. Electron. Devices 53, 2328-2334 (2006). [CrossRef]
  17. R. J. McIntyre, "The distribution of gains in uniformly multiplying avalanche photodiodes: theory," IEEE Trans. Electron. Devices ED-19, 703-713 (1972). [CrossRef]
  18. J. C. Campbell, S. Chandrasekhar, W. T. Tsang, G. J. Qua, and B. C. Johnson, "Multiplication noise of wide-bandwidth InP/InGaAsP/InGaAs avalanche photodiodes," J. Lightwave Technol. 7, 473-478 (1989). [CrossRef]
  19. I. Watanabe, T. Torikai, K. Makita, K. Fukushima, and T. Uji, "Impact ionization rates in (100) Al0.48In0.52As," IEEE Electron. Device Lett. 11, 437-438 (1990). [CrossRef]
  20. R. B. Emmons, "Avalanche-photodiode frequency response," J. Appl. Phys. 38, 3705-3714 (1967). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited