OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 13 — Jun. 23, 2008
  • pp: 9378–9390

Complex propagation constants of surface plasmon polariton rectangular waveguide by method of lines

Tran Trong Minh, Kazuo Tanaka, and Masahiro Tanaka  »View Author Affiliations

Optics Express, Vol. 16, Issue 13, pp. 9378-9390 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (470 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A numerical study on the complex propagation constants of the surface plasmon polariton (SPP) rectangular hollow waveguide by the method of lines (MoL) is performed. New cut-off conditions are proposed for the SPP waveguide. A SPP rectangular hollow waveguide constructed of gold is first considered. The dependences of complex propagation constants on the sizes of the waveguide and on the wavelength are investigated. Fundamental and unusual characteristics of the SPP waveguide are revealed. The validity and limitations of effective index method (EIM) are examined by comparing the numerical results obtained by the MoL with the approximate results obtained by EIM. The differences in the propagation characteristics among the various metals are then shown.

© 2008 Optical Society of America

OCIS Codes
(230.7370) Optical devices : Waveguides
(240.6680) Optics at surfaces : Surface plasmons
(260.2110) Physical optics : Electromagnetic optics

ToC Category:
Optics at Surfaces

Original Manuscript: April 2, 2008
Revised Manuscript: May 15, 2008
Manuscript Accepted: June 3, 2008
Published: June 11, 2008

Tran T. Minh, Kazuo Tanaka, and Masahiro Tanaka, "Complex propagation constants of surface plasmon polariton rectangular waveguide by method of lines," Opt. Express 16, 9378-9390 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, "Guiding of a one-dimensional optical beam with nanometer diameter," Opt. Lett. 22, 475-477 (1997). [CrossRef] [PubMed]
  2. S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, "Plasmonics - A route to nanoscale optical devices," Adv. Mater. 13, 1501-1505 (2001). [CrossRef]
  3. T. Yatsui, M. Kourogi, and M. Ohtsu, "Plasmon waveguide for optical far/near-field conversion," Appl. Phys. Lett. 79, 4583-4585 (2001). [CrossRef]
  4. W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003). [CrossRef] [PubMed]
  5. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, "Channel plasmon-polariton guiding by subwavelength metal grooves," Phys. Rev. Lett. 95, 046802 (2005). [CrossRef] [PubMed]
  6. K. Tanaka and M. Tanaka, "Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide," Appl. Phys. Lett. 82, 1158-1160 (2003). [CrossRef]
  7. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998). [CrossRef]
  8. K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, "Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes," Phys. Rev. Lett. 92, 183901 (2004). [CrossRef] [PubMed]
  9. R. Gordon, L. K. S. Kumar, and A. G. Brolo, "Resonant light transmission through a nanohole in a metal film," IEEE Trans. Nanotech. 5, 291-294 (2006). [CrossRef]
  10. H. J. Lezec, J. A. Dionne, and H. A. Atwater, "Negative refraction at visible frequencies," Science 316,430-432 (2007). [CrossRef] [PubMed]
  11. J. A. Dionne, H. J. Lezec, and H. A. Atwater, "Highly confined photon transport in subwavelength metallic slot waveguides," Nano Lett. 6, 1928-1932 (2006). [CrossRef] [PubMed]
  12. J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, "Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization," Phys. Rev. B 73, 035407 (2006). [CrossRef]
  13. A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, "Optical transmission properties of a single subwavelength aperture in a real metal," Opt. Comm. 239, 61-66 (2004). [CrossRef]
  14. R. Gordon and A. G. Brolo, "Increased cut-off wavelength for a subwavelength hole in a real metal," Opt. Express 13, 1933-1938 (2005). [CrossRef] [PubMed]
  15. A. Kumar and T. Srivastava, "Modeling of a nanoscale rectangular hole in a real metal," Opt. Lett. 33, 333-335 (2008). [CrossRef] [PubMed]
  16. F. Garcia-Vidal, L. Martin-Moreno, E. Moreno, L. K. Kumar, and R. Gordon, "Transmission of light through a single rectangular hole in a real metal," Phys. Rev. B  74, 153411-1-4 (2006). [CrossRef]
  17. S. Collin, F. Pardo, and J.-L. Pelouard, "Waveguiding in nanoscale metallic apertures," Opt. Express 15, 4310-4320 (2007). [CrossRef] [PubMed]
  18. P. Berini and K. Wu, "Modeling lossy anisotropic dielectric waveguides with the method of lines," IEEE Trans. Microwave Theory Tech. 44, 749-759 (1996). [CrossRef]
  19. P. Berini, "Plasmon-polariton modes guided by a metal film of finite width bounded by different dielectrics," Opt. Express 7, 329-335 (2000). [CrossRef] [PubMed]
  20. R. Pregla and W. Pascher "The method of lines," in Numerical techniques for microwave and millimeter-wave passive structures T. Itoh, Ed. (New York: Wiley, 1989).
  21. U. Rogge and R. Pregla, "Method of lines for the analysis of dielectric waveguides," J. Lightwave Technol. 11, 2015-2020 (1993). [CrossRef]
  22. Johnson and Christy, "Optical constants of the nobel metals," Phys. Rev. B 12, 4370-4379 (1972). [CrossRef]
  23. D. W. Lynch and W. R. Hunter, "Aluminum (Al) and nickel (Ni)," in Handbook of optical constants of solids, E. D. Palik, ed. (Academic, New York, 1985).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited