OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 13 — Jun. 23, 2008
  • pp: 9391–9397

Spectral properties of photonic crystal double heterostructure resonant cavities

Adam Mock, Ling Lu, and J. D. O’Brien  »View Author Affiliations


Optics Express, Vol. 16, Issue 13, pp. 9391-9397 (2008)
http://dx.doi.org/10.1364/OE.16.009391


View Full Text Article

Enhanced HTML    Acrobat PDF (2103 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Spectral properties of photonic crystal double heterostructure resonant cavities are calculated numerically using the three-dimensional finite-difference time-domain method. Resonance frequencies and quality factors are reported for various bound states that form near stationary points in the photonic crystal dispersion diagram. The associated electric field spatial profiles are presented indicating potential for in-plane laser optimization. In addition, Fabry-Perot oscillations are observed in the spectra.

© 2008 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(140.3410) Lasers and laser optics : Laser resonators

ToC Category:
Integrated Optics

History
Original Manuscript: April 1, 2008
Revised Manuscript: May 7, 2008
Manuscript Accepted: May 30, 2008
Published: June 11, 2008

Citation
Adam Mock, Ling Lu, and J. D. O'Brien, "Spectral properties of photonic crystal double heterostructure resonant cavities," Opt. Express 16, 9391-9397 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-13-9391


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. Zhang, F. Qiao, J. Wan, and J. Zi, "Large frequency range of neglible transmission in one-dimensional photonic quantum well structures," Appl. Phys. Lett. 73, 2084 (1998). [CrossRef]
  2. N. Stefanou, V. Yannopapas, and A. Modinos, "Heterostructures of photonic crystals: frequency bands and transmission coefficients," Comput. Phys. Commum. 113, 39 (1998). [CrossRef]
  3. C. Zhang, F. Qiao, J. Wan, and J. Zi, "Enlargement of nontransmission frequency range in photonic crystals by using multiple heterostructures," J. Appl. Phys. 87, 3174 (2000). [CrossRef]
  4. E. Istrate, M. Charbonneau-Lefort, and E. H. Sargent, "Theory of photonic crystal heterostructures," Phys. Rev. B 66, 075121 (2002). [CrossRef]
  5. B.-S. Song, T. Asano, and S. Noda, "Heterostructures in two-dimensional photonic-crystal slabs and their application to nanocavities," J. Phys. D 40, 2629-2634 (2007). [CrossRef]
  6. Y. Takahashi, H. Hagino, Y. Tanaka, B.-S. Song, T. Asano, and S. Noda, "High-Q nanocavity with a 2-ns photon lifetime," Opt. Express 15, 17206-17213 (2007). [CrossRef] [PubMed]
  7. S. Noda, M. Fujita, and T. Asano, "Spontaneous-emission control by photonic crystals and nanocavities," Nature. Photon. 1, 449-458 (2007). [CrossRef]
  8. E. Istrate and E. H. Sargent, "Photonic crystal heterostructures and interfaces," Rev. Mod. Phy. 78, 455-481 (2006). [CrossRef]
  9. E. Istrate and E. H. Sargent, "Photonic crystal heterostructures-resonant tunnelling, waveguides and filters," J. Opt. A 4, S242-S246 (2 002). [CrossRef]
  10. A. Sharkawy, S. Shi, and D. W. Prather, "Heterostructure Photonic Crystals: Theory and Applications," Appl. Opt. 41, 7245-7253 (2002). [CrossRef] [PubMed]
  11. E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, and T. Tanabe, "Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect," Appl. Phys. Lett. 88, 041112 (2006). [CrossRef]
  12. S. Tomljenovic-Hanic, C. M. de Sterke, and M. J. Steel, "Design of high-Q cavities in photonic crystal slab heterostructures by air-holes infiltration," Opt. Express 14, 12451-12456 (2006). [CrossRef] [PubMed]
  13. C. L. C. Smith, D. K. C. Wu, M. W. Lee, C. Monat, S. Tomljenovic-Hanic, C. Grillet, B. J. Eggleton, D. Freeman, Y. Ruan, S. Madden, B. Luther-Davies, H. Giessen, and Y.-H. Lee, "Microfluidic photonic crystal double heterostructures," Appl. Phys. Lett. 91, 121103 (2007). [CrossRef]
  14. S. Tomljenovic-Hanic, M. J. Steel, C. M. de Sterke, and D. J. Moss, "High-Q cavities in photosensitive photonic crystals," Opt. Lett. 32, 542-544 (2007). [CrossRef] [PubMed]
  15. S.-H. Kwon, T. Sunner, M. Kamp, and A. Forchel,"Ultrahigh-Q photonic crystal cavity created by modulating air hole radius of a waveguide," Opt. Express 16, 4605-4614 (2008). [CrossRef] [PubMed]
  16. L. Lu, T. Yang, A. Mock, M. H. Shih, E. H. Hwang, M. Bagheri, A. Stapleton, S. Farrell, J. D. Obrien, and P. D. Dapkus, "100 ???W Edge-Emitting Peak Power from a Photonic Crystal Double-Heterostructure Laser," in Conference on Laser and Electro-Optics Technical Digest, (2007) paper CMV3.
  17. T. Yang, S. Lipson, A. Mock, J. D. O???Brien, and D. G. Deppe, "Edge-emitting photonic crystal doubleheterostructure nanocavity lasers with InAs quantum dot active material," Opt. Lett. 32, 1153-1155 (2007). [CrossRef] [PubMed]
  18. M. H. Shih,W. Kuang, A. Mock, M. Bagheri, E. H. Hwang, J. D. O???Brien, and P. D. Dapkus, "High-quality-factor photonic crystal heterostructure laser," Appl. Phys. Lett. 89, 101104 (2006). [CrossRef]
  19. B.-S. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nat. Mater. 4, 207-210 (2005). [CrossRef]
  20. S. Dey and R. Mittra, "Efficient computation of resonant frequencies and quality factors of cavities via a combination of the finite-difference time-domain technique and the Pade approximation," IEEE Microwave Guid.Wave Lett. 8, 415-417 (1998). [CrossRef]
  21. M. H. Shih, W. Kuang, T. Yang, M. Bagheri, Z.-J. Wei, S.-J. Choi, L. Lu, J. D. O???Brien, and P. D. Dapkus, "Experimental characterization of the optical loss of sapphire-bonded photonic crystal laser cavities," IEEE Photon. Technol. Lett. 18, 535-537 (2006). [CrossRef]
  22. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O???Brien, P. D. Dapkus, and I. Kim "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819-1821 (1999). [CrossRef] [PubMed]
  23. A. Oppenheim and R. Schafer, Discrete-Time Signal Processing (Prentice Hall, Upper Saddle River, NJ, 1999).
  24. B.-S. Song, T. Asano, Y. Akahane, Y. Tanaka, and S. Noda, "Transmission and reflection characteristics of in-plane hetero-photonic crystals," Appl. Phys. Lett. 85, 4591-4593 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited