OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 13 — Jun. 23, 2008
  • pp: 9480–9494

Improved transmission performance of adaptively modulated optical OFDM signals over directly modulated DFB laser-based IMDD links using adaptive cyclic prefix

E. Giacoumidis, J. L. Wei, X. Q. Jin, and J.M. Tang  »View Author Affiliations


Optics Express, Vol. 16, Issue 13, pp. 9480-9494 (2008)
http://dx.doi.org/10.1364/OE.16.009480


View Full Text Article

Enhanced HTML    Acrobat PDF (189 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The impact of Adaptive Cyclic Prefix (ACP) on the transmission performance of Adaptively Modulated Optical OFDM (AMOOFDM) is explored thoroughly in directly modulated DFB laser-based, IMDD links involving Multimode Fibres (MMFs)/Single-Mode Fibres (SMFs). Three ACP mechanisms are identified, each of which can, depending upon the link properties, affect significantly the AMOOFDM transmission performance. In comparison with AMOOFDM having a fixed cyclic prefix duration of 25%, AMOOFDM with ACP can not only improve the transmission capacity by a factor of >2 (>1.3) for >1000m MMFs (<80km SMFs) with 1dB link loss margin enhancement, but also relax considerably the requirement on the DFB bandwidth.

© 2008 Optical Society of America

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.2430) Fiber optics and optical communications : Fibers, single-mode
(060.4080) Fiber optics and optical communications : Modulation
(060.3510) Fiber optics and optical communications : Lasers, fiber

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: March 27, 2008
Revised Manuscript: June 5, 2008
Manuscript Accepted: June 9, 2008
Published: June 12, 2008

Citation
E. Giacoumidis, J. L. Wei, X. Q. Jin, and J. M. Tang, "Improved transmission performance of adaptively modulated optical OFDM signals over directly modulated DFB laser-based IMDD links using adaptive cyclic prefix," Opt. Express 16, 9480-9494 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-13-9480


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Franceschini, G. Bongiorni, G. Ferrari, R. Raheli, F. Meli, and A. Castoldi, "Fundamental limits of electronics signal processing in direct-detection optical communications," J. Lightwave Technol. 25, 1742-1753 (2007). [CrossRef]
  2. P. Watts, R. Waegemans, M. Glick, P. Bayvel, and R. Killey, "An FPGA-based optical transmitter design using real-time DSP for advanced signal formats and electronic predistortion," J. Lightwave Technol. 25, 3089-3099 (2007). [CrossRef]
  3. J. Heiskala and J. Terry, OFDM Wireless LANs: a Theoretical and Practical Guide (Indianapolis, IN: Sams 2002).
  4. N. E. Jolley, H. Kee, R. Rickard, J. M. Tang, and K. Cordina, "Generation and propagation of a 1550 nm 10 Gb/s optical orthogonal frequency division multiplexed signal over 1000m of multimode fibre using a directly modulated DFB," Optical Fibre Communication Conf./National Fiber Optic Engineers Conf. (OFC/NFOEC), (Anaheim, CA, 2005), Paper OFP3.
  5. J. M. Tang, P. M. Lane, and K. A. Shore, "High-speed transmission of adaptively modulated optical OFDM signals over multimode fibers using directly modulated DFBs," J. Lightwave Technol. 24, 429-441 (2006). [CrossRef]
  6. J. M. Tang, K. A. Shore, "Maximizing the transmission performance of adaptively modulated optical OFDM signals in multimode-fiber links by optimizing analog-to-digital converters," J. Lightwave Technol. 25, 787-798 (2007). [CrossRef]
  7. W. Shieh, H. Bao, and Y. Tang, "Coherent optical OFDM: theory and design," Opt. Express 16, 841-859 (2008). [CrossRef] [PubMed]
  8. A. J. Lowery, "Amplified-spontaneous noise limit of optical OFDM lightwave systems," Opt. Express 16, 860-865 (2008). [CrossRef] [PubMed]
  9. L. A. Buckman, B. E. Lemoff, A. J. Schmit, R. P. Tella, and W. Gong, "Demonstration of a small-form-factor WWDM transceiver module for 10-Gb/s local area networks," IEEE Photon. Technol. Lett. 14, 702-704 (2002). [CrossRef]
  10. L. Raddatz, I. H. White, D. G. Cunningham, and M. C. Nowell, "An experimental and theoretical study of the offset launch technique for the enhancement of the bandwidth of multimode fiber links," J. Lightwave Technol. 16, 324-331 (1998). [CrossRef]
  11. M. Webster, E. J. Tyler, A. Wonfor, R.V. Penty, and I. H. White, "Novel cascaded optical coding schemes for bandwidth efficient systems applications," Proc. Optical Fibre Communication Conf. and Exhibit (OFC) 3, (Anaheim, CA, 2001), pp. WDD47-1-WDD47-3.
  12. R. A. Panicker, J. P. Wilde, J. M. Kahn, D. F. Welch, and I. Lyubomirsky "10??10Gb/s DWDM transmission through 2.2-km multimode fiber using adaptive optics," IEEE Photon. Technol. Lett. 19, 1154-1156 (2007). [CrossRef]
  13. P. M. Watts, V. Mikhailov, S. Savory, P. Bayvel, M. Glick, M. Lobel, B. Christensen, P. Kirkpatrick, S. Shang, and R. I. Killey, "Performance of single mode fiber links using electronic feed-forward and decision feedback equalizers," IEEE Photon. Technol. Lett. 17, 2206-2208 (2005). [CrossRef]
  14. M. Cavalari, C. R. S. Fludger, and P. Anslow, "Electronic signal processing for differential phase modulation formats," presented at the OFC, (Los Angeles, CA, 2004), Paper TuG2.
  15. J. M. Tang, K. A. Shore, "30-Gb/s signal transmission over 40-km directly modulated DFB-laser-based single-mode-fiber links without optical amplification and dispersion compensation," J. Lightwave Technol. 24, 2318-2327 (2006). [CrossRef]
  16. J. M. Tang, P. M. Lane, and K. A. Shore, "Transmission performance of adaptively modulated optical OFDM signals in multimode fiber links," IEEE Photon. Technol. Lett. 18, 205-207 (2006). [CrossRef]
  17. X. Q. Jin, J. M. Tang, P. S. Spencer, and K. A. Shore, "Optimization of adaptively modulated optical OFDM modems for multimode fiber-based local area networks," J. Opt. Netw. 7, 198-214 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=JON-7-3-198. [CrossRef]
  18. X. Q. Jin, J. M. Tang, K. Qiu and P. S. Spencer, "Statistical investigations of the transmission performance of adaptively modulated optical OFDM signals in multimode fibre links," J. Lightwave Technol. 26, (2008) (accepted for publication). [CrossRef]
  19. L. Hanzo, S. X. Ng, T. Keller and W. Webb, Quadrature Amplitude Modulation: From Basics to Adaptive Trellis- Coded, Turbo-Equalised and Space-Time Coded OFDM, CDMA and MC-CDMA Systems (Wiley, 2004).
  20. B. J. C. Schmidt, A. J. Lowery, and J.  Armstrong, "Experimental demonstrations of electronic Dispersion compensation for long-haul transmission using direct-detection optical OFDM," J. Lightwave Technol. 26, 196 - 203 (2008). [CrossRef]
  21. G. P. Agrawal, Fibre-Optic Communication Systems, (Wiley, 1997).
  22. G. P. Agrawal, Nonlinear Fibre Optics, (Academic, 1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited