OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 13 — Jun. 23, 2008
  • pp: 9595–9600

Widely Tunable Reflection-type Fabry-Perot Interferometer based on Relaxor Ferroelectric Poly(vinylidenefluoride-chlorotrifluoroethylene-trifluoroethylene)

Hongyu Zhen, Hui Ye, Xu Liu, Dexi Zhu, Haifeng Li, Yingying Lu, and Qing Wang  »View Author Affiliations


Optics Express, Vol. 16, Issue 13, pp. 9595-9600 (2008)
http://dx.doi.org/10.1364/OE.16.009595


View Full Text Article

Enhanced HTML    Acrobat PDF (915 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A reflection-type Fabry-Perot interferometer (FPI) with a large tunability has been demonstrated on relaxor ferroelectric poly(vinylidenefluoride-chlorotrifluoroethylene-trifluoroethylene) [P(VDF-CTFE-TrFE)] 78.9/13.9/7.2 mol% with a thickness of 9.2 µm. The optical path length of the FPI is modulated by the electrostrictive strain of the terpolymer under electric field, where the low-loss distributed Bragg reflector and aluminium film are employed as the mirrors in the FPI. A positive strain of 20% has been achieved in the terpolymer film under a field of 30 MV/m, which leads to the FPI with a tunable range of more than 200 nm at wavelengths around 680 nm.

© 2008 Optical Society of America

OCIS Codes
(120.2230) Instrumentation, measurement, and metrology : Fabry-Perot
(160.5470) Materials : Polymers
(130.2260) Integrated optics : Ferroelectrics

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: April 17, 2008
Revised Manuscript: May 20, 2008
Manuscript Accepted: May 26, 2008
Published: June 13, 2008

Citation
Hongyu Zhen, Hui Ye, Xu Liu, Dexi Zhu, Haifeng Li, Yingying Lu, and Qing Wang, "Widely tunable reflection-type Fabry-Perot interferometer based on relaxor ferroelectric poly(vinylidenefluoride-chlorotrifluoroethylene-trifluoroethylene)," Opt. Express 16, 9595-9600 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-13-9595


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. R. Feldman, S. C. Esener, and C. C. Guest, "Comparison between optical and electrical interconnects based on power and speed considerations," Appl. Opt. 27, 1742-1751 (1988). [CrossRef] [PubMed]
  2. R. Gamble and P. H. Lissberger, "Reflection filter multilayers of metallic and dielectric thin films," Appl. Opt. 28, 2838-2846 (1989). [CrossRef] [PubMed]
  3. S. R. Mallinson, "Wavelength-selective filters for single-mode fiber WDM systems using Fabry-Perot interferometers," Appl. Opt. 26, 430-436 (1987). [CrossRef] [PubMed]
  4. F. Wang, K. K. Li, V. Fuflyigin, H. Jiang, J. Zhao, P. Norris, D. Goldstein, "Thin ferroelectric interferometer for spatial light modulations" Appl. Opt. 37, 7490-7495 (1998). [CrossRef]
  5. E. Spiller, "Reflective multilayer coatings for the far UV region," Appl. Opt. 15, 2333-2338 (1976). [CrossRef] [PubMed]
  6. J.-S. Sheng and J.-T. Lue, "Ultraviolet narrow-band rejection filters composed of multiple metal and dielectric layers," Appl. Opt. 31, 6117-6121 (1992). [CrossRef] [PubMed]
  7. J. Xu, L. Zhou, and M. Thakur, "Electro-optic modulation using an organic single crystal film in a Fabry-Perot cavity," Appl. Phys. Lett. 72, 153-154 (1998). [CrossRef]
  8. R. U. A. Khan, O.-P. Kwon, A. Tapponnier, A. N. Rashid, and P. Günter, "Supramolecular ordered Organic Thin Films for Nonlinear Optical and Optoelectronic Applications," Adv. Funct. Mater. 16, 180-188 (2006). [CrossRef]
  9. T.-D. Kim, J. D. Luo, J.-W. Ka, S. Hau, Y. Q. Tian, Z. W. Shi, N. M. Tucker, S.-H. Jang, J.-W. Kang, A. K.-Y. Jen, "Ultra large and thermally stable electro-optic activities from Diels-Alder crosslinkable polymers containing BinaryChromophore Systems," Adv. Mater. 18, 3038-3042 (2006). [CrossRef]
  10. H. Y. Gan, H. X. Zhang, C. T. DeRose, J. D. Luo, A. K.-Y. Jen, "Hybrid Fabry-Pérot étalon using an electro-optic polymer for optical modulation," Appl. Phys. Lett. 89, 141113 (2006). [CrossRef]
  11. H. Y. Gan, H. X. Zhang, C. T. DeRose, R. A. Norwood, N. Peyghambarian, M. Fallahi, J. D. Luo, B. Q. Chen, A. K.-Y. Jen, "Low drive voltage Fabry-Pérot étalon device tunable filters using poledhybrid sol-gel materials" Appl. Phys. Lett. 89, 041127 (2006) [CrossRef]
  12. T. T. Wang, J. M. Herbert, and A. M. Glass, The Applications of the Ferroelectric Polymers (Chapman and Hall, New York, 1988).
  13. H. Xu, Z.-Y. Cheng, D. Olson, T. Mai, Q. M. Zhang, and G. Kavarnos, "Ferroelectric and electromechanical properties of poly.vinylidene-fluoride-trifluoroethylene-chlorotrifluoroethylene terpolymer"Appl. Phys. Lett. 78, 2360 (2001). [CrossRef]
  14. F. Xia, Z. Y. Cheng, H. S. Xu, H. F. Li, Q. M. Zhang, G. J. Kavarnos, R. Y. Ting, G. A. Sadek, and K. D. Belfield, High Electromechanical Responses in a Poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene)Terpolymer Adv. Mater. 14, 1574-1577 (2002). [CrossRef]
  15. R. J. Klein, F. Xia, and Q. M. Zhang, "Influence of composition on relaxor ferroelectric and electromechanical properties of polyvinylidene fluoride trifluoroethylenechlorofluoroethylene," J. Appl. Phys. 97, 094105 (2005). [CrossRef]
  16. D.-Y. Jeong, Y. K. Wang, M. Huang, Q. M. Zhang, G. J. Kavarnos, and F. Bauer, "Electro-optical response of the ferroelectric relaxor polyvinylidene fluoride-trifluoroethylene-chlorofluoroethylene terpolymer" J. Appl. Phys. 91, 316-319 (2004). [CrossRef]
  17. D.-Y. Jeong, Y.-H. Ye, and Q. M. Zhang, "Electrical tunable Fabry-Perot interferometer using a poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) terpolymer," Appl. Phys. Lett. 85, 21, 4857-4859 (2004). [CrossRef]
  18. C. M. Roland, J. T. Garrett, R. Casalini, D. F. Roland, P. G. Santangelo, and S. B. Qadri, "Mechanical and Electromechanical Properties of Vinylidene Fluoride Terpolymers," Chem. Mater. 16, 857-861 (2004). [CrossRef]
  19. Y. Lu, J. Claude, B. Neese, Q. M. Zhang, and Q. Wang, "A Modular approach to Ferroelectric Polymers with chemically tunable curie temperatures and dielectric constants," J. Am. Chem. Soc. 128, 8120-8121 (2006). [CrossRef] [PubMed]
  20. Y. Lu, J. Claude, Q. M. Zhang, and Q. Wang, "Microstructures and Dielectric Properties of the Ferroelectric Fluoropolymers Synthesized via reductive Dechlorination of Poly(vinylidene fluoride-co-chlorotrifluoroethylene)s," Macromolecules 39, 6962-6968 (2006). [CrossRef]
  21. J. F. Tang, P. F. Gu, X. Liu and H. F. Li, "theoretical calculation for optical film," in Model Optical Thin Film Technology (Zhejing University Press, 2006), pp. 5-36.
  22. M. Born and E. Wolf. Principle of Optics (Beijing: Science Press, 1978).
  23. J. Ballato, S. Foulger, and D. W. Smith, "Optical properties of perfluorocyclobutyl polymers,"J. Opt. Soc. Am. B 20, 1838-1843 (2003). [CrossRef]
  24. M. Jerman, Z. H. Qiao, and D. Mergel, "Refractive index of thin films of SiO2, ZrO2, and HfO2 as a function of the films??? mass density," Appl. Opt. 44, 3006-3012 (2005). [CrossRef] [PubMed]
  25. C. A. Eldering, A. Knoesen, and S. T. Kowel, "Use of Fabry-Pérot devices for the characterization of polymeric electro-optic films," J. Appl. Phys. 69, 3676-3679 (1991). [CrossRef]
  26. R. Casasini and C. M. Roland, "Electromechanical Properties of Poly(vinylidene fluoridetrifluoroethylene) Networks," J. Polym. Sci. Part B: Polym. Phys. 40, 1975-1984 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited