OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 13 — Jun. 23, 2008
  • pp: 9614–9621

STED microscopy with a supercontinuum laser source

Dominik Wildanger, Eva Rittweger, Lars Kastrup, and Stefan W. Hell  »View Author Affiliations

Optics Express, Vol. 16, Issue 13, pp. 9614-9621 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (4531 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on a straightforward yet powerful implementation of stimulated emission depletion (STED) fluorescence microscopy providing subdiffraction resolution in the far-field. Utilizing the same supercontinuum pulsed laser source both for excitation and STED, this implementation of STED microscopy avoids elaborate preparations of laser pulses and conveniently provides multicolor imaging. Operating at pulse repetition rates around 1 MHz, it also affords reduced photobleaching rates by allowing the fluorophore to relax from excitable metastable dark states involved in photodegradation. The imaging of dense nanoparticles and of the microtubular network of mammalian cells evidences a spatial resolution of 30–50 nm in the focal plane, i.e. by a factor of 8–9 beyond the diffraction barrier.

© 2008 Optical Society of America

OCIS Codes
(180.1790) Microscopy : Confocal microscopy
(180.2520) Microscopy : Fluorescence microscopy
(320.6629) Ultrafast optics : Supercontinuum generation

ToC Category:

Original Manuscript: May 6, 2008
Revised Manuscript: May 30, 2008
Manuscript Accepted: May 30, 2008
Published: June 13, 2008

Virtual Issues
Vol. 3, Iss. 7 Virtual Journal for Biomedical Optics

Dominik Wildanger, Eva Rittweger, Lars Kastrup, and Stefan W. Hell, "STED microscopy with a supercontinuum laser source," Opt. Express 16, 9614-9621 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. W. Hell and J. Wichmann, "Breaking the diffraction resolution limit by stimulated emission: stimulated emission depletion microscopy," Opt. Lett. 19, 780-782 (1994). [CrossRef] [PubMed]
  2. T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, "Fluorescence microscopy with diffraction resolution limit broken by stimulated emission," Proc. Nat. Acad. Sci. U.S.A. 97, 8206-8210 (2000). [CrossRef]
  3. K. I. Willig, S. O. Rizzoli, V. Westphal, R. Jahn, and S. W. Hell, "STED-microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis," Nature 440, 935 - 939 (2006). [CrossRef] [PubMed]
  4. G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, and S. W. Hell "Macromolecular-scale resolution in biological fluorescence microscopy," Proc. Natl. Acad. Sci. U. S. A. 103, 11440-11445 (2006). [CrossRef] [PubMed]
  5. Q1. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, "Imaging Intracellular Fluorescent Proteins at Nanometer Resolution," Science 313, 1642-1645 (2006). [CrossRef] [PubMed]
  6. M. J. Rust, M. Bates, and X. Zhuang, "Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)," Nat Meth 3, 793-796 (2006). [CrossRef]
  7. S. T. Hess, T. P. K. Girirajan, and M. D. Mason, "Ultra-High Resolution Imaging by Fluorescence Photoactivation Localization Microscopy," Biophys. J. 91, 4258-4272 (2006). [CrossRef] [PubMed]
  8. S. W. Hell, "Far-Field Optical Nanoscopy," Science 316, 1153-1158 (2007). [CrossRef] [PubMed]
  9. K. I. Willig, B. Harke, R. Medda, and S. W. Hell, "STED microscopy with continuous wave beams," Nature Methods 4, 915-918 (2007). [CrossRef] [PubMed]
  10. V. Westphal and S. W. Hell, "Nanoscale Resolution in the Focal Plane of an Optical Microscope," Phys. Rev. Lett. 94, 143903 (2005). [CrossRef] [PubMed]
  11. B. Harke, J. Keller, C. K. Ullal, V. Westphal, A. Schoenle, and S. W. Hell, "Resolution scaling in STED microscopy," Opt. Express 16, 4154-4162 (2008). [CrossRef] [PubMed]
  12. E. K. L. Yeow, S. M. Melnikov, T. D. M. Bell, F. C. DeSchryver, and J. Hofkens, "Characterizing the Fluorescence Intermittency and Photobleaching Kinetics of Dye Molecules Immobilized on a Glass Surface," J. Phys. Chem. A 110, 1726-1734 (2006). [CrossRef] [PubMed]
  13. R. Zondervan, F. Kulzer, M. A. Kolchenko, and M. Orrit, "Photobleaching of Rhodamine 6G in Poly(vinyl alcohol) at the ensemble and single-molecule levels," J. Phys. Chem. A 108, 1657-1665 (2004). [CrossRef]
  14. L. A. Deschenes and D. A. Vanden Bout, "Single molecule photobleaching: increasing photon yield and survival time through suppression of two-step photolysis," Chem. Phys. Lett. 365, 387-395 (2002). [CrossRef]
  15. P. Russell, "Photonic Crystal Fibers," Science 299, 358-362 (2003). [CrossRef] [PubMed]
  16. J. K. Ranka, R. S. Windeler, and A. J. Stentz, "Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm," Opt. Lett. 25, 25-27 (2000). [CrossRef]
  17. E. Auksorius, B. R. Boruah, C. Dunsby, P. M. P. Lanigan, G. Kennedy, M. A. A. Neil, and P. M. W. French, "Stimulated emission depletion microscopy with a supercontinuum source and fluorescence lifetime imaging," Opt. Lett. 33, 113-115 (2008). [CrossRef] [PubMed]
  18. J. Keller, A. Schönle, and S. W. Hell, "Efficient fluorescence inhibition patterns for RESOLFT microscopy," Opt. Express 15, 3361-3371 (2007). [CrossRef] [PubMed]
  19. M. Osborn and K. Weber, "Immunofluorescence and Immunocytochemical Procedures with Affinity Purified Antibodies: Tubulin-Containing Structures," Meth. Cell. Biol. 24, 97-132 (1982). [CrossRef]
  20. J. Swartzlander and A. Grover, "Achromatic optical vortex lens," Opt. Lett. 31, 2042-2044 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited