OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 13 — Jun. 23, 2008
  • pp: 9654–9670

Controlling the shape of Talbot bands’ visibility

Daniel Woods and Adrian Podoleanu  »View Author Affiliations

Optics Express, Vol. 16, Issue 13, pp. 9654-9670 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (950 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a theoretical model to predict the sensitivity variation versus optical path difference (OPD) in Fourier domain spectral interferometry using configurations which produce Talbot bands. Such configurations require that the two interfering beams use different parts of the diffraction grating in the interrogating spectrometer. So far, the power distribution within the two beams in a Talbot bands experiment was considered uniform. In this report, we show that by manipulating the power distribution within the two interfering beams, the OPD value where maximum sensitivity is achieved can be conveniently tuned, as well as the sensitivity variation with OPD. Furthermore, creating a gap between the two beams leads to adjustment of the minimum detectable OPD value, while the width of the beams determine the maximum detectable OPD value. These features cannot be explained by theoretical models published so far involving spectrometer resolution elements only, while such features are correctly predicted by the model presented here.

© 2008 Optical Society of America

OCIS Codes
(110.4500) Imaging systems : Optical coherence tomography
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: April 21, 2008
Revised Manuscript: June 11, 2008
Manuscript Accepted: June 13, 2008
Published: June 16, 2008

Virtual Issues
Vol. 3, Iss. 7 Virtual Journal for Biomedical Optics

Daniel Woods and Adrian Podoleanu, "Controlling the shape of Talbot bands' visibility," Opt. Express 16, 9654-9670 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Talbot, "An experiment on the interference of light," Philos. Mag. 10, 364 (1837).
  2. A. L. King and R. Davis, "The Curious Bands of Talbot," American J. Phys. 39, 1195-1198 (1971). [CrossRef]
  3. G. B. Airy, "The Bakerian Lecture - on the theoretical explanation of an apparent new polarity in light," Phil. Trans. R. Soc. London 130, 225-244, (1840). [CrossRef]
  4. M. P. Givens "Talbot??s bands," Am. J. Phys. 61, 601-5 (1993). [CrossRef]
  5. R. S. Longhurst, Geometrical and Physical Optics (Longman, Inc., New York, 1973), Chap. 6.
  6. J. Jahns, A. W. Lohmann, and M. Bohling, "Talbots Bands and temporal processing of optical signals," J. Eur. Opt. Soc, Rapid Publ. 1, 06001 (2006). [CrossRef]
  7. Z. Benko, M. Hilbert, and Z. Bor, "New considerations on Talbot??s Bands," Am. J. Phys. 68, 513-520 (2000). [CrossRef]
  8. A. Gh. Podoleanu, "Unique interpretation of Talbot bands and Fourier domain white light interferometry," Opt. Express 15, 2007, 9867-9876 [CrossRef] [PubMed]
  9. A. Gh. Podoleanu, S. Taplin, D. J. Webb, and D. A. Jackson, " Talbot-like Bands for Laser Diode Below Threshold," J. Optics A: Pure Appl. Opt. 6, 413-424 (1997). [CrossRef]
  10. A. Gh. Podoleanu, S. Taplin, D. J. Webb, and D. A. Jackson, "Theoretical Study of Talbot-like Bands Observed Using a Laser Diode Below Threshold," J. Optics A: Pure and Appl. Opt. 7, 517-536 (1998). [CrossRef]
  11. N. Nassif, B. Cense, B. Park, M. Pierce, S. Yun, B. Bouma, G. Tearney, T. Chen, and J. de Boer, "In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve," Opt. Express 12, 367-376 (2004). [CrossRef] [PubMed]
  12. Z. Hu, Y. Pan, and A. M. Rollins, "Analytical model of spectrometer-based two-beam spectral interferometry," Appl. Opt. 46, 8499-8505 (2007). [CrossRef] [PubMed]
  13. A. Gh. Podoleanu, S. Taplin, D. J. Webb, and D. A. Jackson, "Channeled Spectrum Display using a CCD Array for Student Laboratory Demonstrations," Eur. J. Phys. 15, 266-271 (1994). [CrossRef]
  14. F. A. Jenkins, H. E. White, Fundamentals of Optics (McGraw-Hill, 1957), pp. 284
  15. L. M. Smith and C. C. Dobson, "Absolute Displacement Measurements using Modulation of the Spectrum of White Light in a Michelson Interferometer," Appl. Opt. 28, 3339-42 (1981). [CrossRef]
  16. J. Schwider and Liang Zhou, "Dispersive interferometric profilometer," Opt. Lett. 19, 995-997 (1994). [CrossRef] [PubMed]
  17. J. Zhang, J. S. Nelson, and Z. Chen, "Removal of a mirror image and enhancement of the signal-to-noise ratio in Fourier-domain optical coherence tomography using an electro-optic phase modulator," Opt. Lett. 30, 147-149 (2005). [CrossRef] [PubMed]
  18. A. Gh. Podoleanu and D. J. Woods "Power efficient FDOCT set-up for selection in the optical path difference sign using Talbot bands," Op. Lett. 32, 2300-2302 (2007). [CrossRef]
  19. L. M. Smith and C. C. Dobson, "Absolute Displacement Measurements using Modulation of the Spectrum of White Light in a Michelson Interferometer," Appl. Opt. 28, 3339-3342 (1981). [CrossRef]
  20. J. Schwider and Liang Zhou, "Dispersive interferometric profilometer," Opt. Lett. 19, 995-997 (1994). [CrossRef] [PubMed]
  21. K. -N. Joo and S. -W. Kim, "Absolute distance measurement by dispersive interferometry using a femtosecond pulse laser," Opt. Express 14, 5954-5960 (2006). [CrossRef] [PubMed]
  22. S. Taplin, A. Gh. Podoleanu, D. J. Webb, and D. A. Jackson, "Displacement Sensor Using Channeled Spectrum Dispersed on a Linear CCD Array," Electron. Lett. 29, 896-897 (1993). [CrossRef]
  23. A. Gh. Podoleanu, S. Taplin, D. J. Webb, and D. A. Jackson, "Channelled Spectrum Liquid Refractometer," Rev. Sci. Instr. 64, 3028-9 (1993). [CrossRef]
  24. M. W. Lindner, P. Andretzky, F. Kiesewetter, and G. Hausler, "Spectral radar: optical coherence tomography in the Fourier domain," Handbook of optical coherence tomography, B. E. Bouma and C. J. Tearney, eds., (Marcel Dekker Inc, New York-Basel, 2002), 335-358.
  25. S. H. Yun, G. J. Tearney, B. E. Bouma, B. H. Park, and J. F. de Boer, "High-speed spectral-domain optical coherence tomography at 1.3 um wavelength," Opt. Express 11, 3598-3604 (2003). [CrossRef] [PubMed]
  26. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, "Performance of Fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889-894 (2003). [CrossRef] [PubMed]
  27. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, "Improved signal-tonoise ratio in spectral-domain compared with time-domain optical coherence tomography," Opt. Lett. 28, 2067-2069 (2003). [CrossRef] [PubMed]
  28. T. Endo, Y. Yasuno, S. Makita, M. Itoh, and T. Yatagai, "Profilometry with line-field Fourier-domain interferometry," Opt. Express 13, 695-701 (2005). [CrossRef] [PubMed]
  29. B. Park, M. C. Pierce, B. Cense, S. -H. Yun, M. Mujat, G. Tearney, B. Bouma, and J. de Boer, "Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 µm," Opt. Express 13, 3931-3944 (2005) [CrossRef] [PubMed]
  30. H. W. Lim and N. A. Soter, Clinical Photomedicine (Marcel Dekker, New York, 1993).
  31. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002). [CrossRef] [PubMed]
  32. A. Bachmann, R. Leitgeb, and T. Lasser, "Heterodyne Fourier domain optical coherence tomography for full range probing with high axial resolution," Opt. Express 14, 1487-1496 (2006). [CrossRef] [PubMed]
  33. A. B. Vakhtin, K. A. Peterson, and D. J. Kane, "Resolving the complex conjugate ambiguity in Fourier-domain OCT by harmonic lock-in detection of the spectral interferogram," Opt. Lett. 31, 1271-1273 (2006). [CrossRef] [PubMed]
  34. M. Sarunic, M. A. Choma, C. Yang, and J. A. Izatt, "Instantaneous complex conjugate resolved spectral domain and swept-source OCT using 3x3 fiber couplers," Opt. Express 13, 957-967 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited