OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 13 — Jun. 23, 2008
  • pp: 9708–9713

Surface plasmon microcavity for resonant transmission through a slit in a gold film

Qiao Min and Reuven Gordon  »View Author Affiliations


Optics Express, Vol. 16, Issue 13, pp. 9708-9713 (2008)
http://dx.doi.org/10.1364/OE.16.009708


View Full Text Article

Enhanced HTML    Acrobat PDF (187 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate the use of a compact surface plasmon (SP) microcavity formed in a 300 nm thick gold film to resonantly enhance the optical transmission through a subwavelength slit. Focussed ion beam milling is used to create 200 nm deep SP microcavities, with widths between 800 nm to 1300 nm, each with a 180 nm slit in its center. The experimentally-measured TM polarized optical transmission has a wavelength-dependent peak that has similarities with finite-difference time-domain calculations in terms of peak-position and enhancement factors of peak transmission. The calculations show, by observing the near-field distributions, the interaction between the SP microcavity standing waves and the slit to create enhanced transmission. The SP microcavity demonstrated here is easily fabricated and may be optimized for future applications in surface-enhanced Raman scattering, nonlinear optics and surface plasmon resonance sensors.

© 2008 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(240.6690) Optics at surfaces : Surface waves
(250.5300) Optoelectronics : Photonic integrated circuits

ToC Category:
Optics at Surfaces

History
Original Manuscript: March 18, 2008
Revised Manuscript: April 24, 2008
Manuscript Accepted: June 13, 2008
Published: June 17, 2008

Citation
Qiao Min and Reuven Gordon, "Surface plasmon microcavity for resonant transmission through a slit in a gold film," Opt. Express 16, 9708-9713 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-13-9708


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998). [CrossRef]
  2. C. Genet, and T. W. Ebbesen, "Light in tiny holes," Nature 445, 39-46 (2007). [CrossRef] [PubMed]
  3. Y. T. Chang, T. H. Chuang, M. W. Tsai, M. J. Lai, and S. C. Lee, "Observation of Fabry-Perot-type surface plasmon on Ag film with perforated short-range 3x3 hole array arranged in long-range periodic structure," Appl. Phys. Lett. 90, 253106 (2007). [CrossRef]
  4. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002). [CrossRef] [PubMed]
  5. T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, "Enhanced light transmission through a single subwavelength aperture," Opt. Lett. 26, 1972-1974 (2001). [CrossRef]
  6. L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, "Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations," Phys. Rev. Lett. 90, 167401 (2003). [CrossRef] [PubMed]
  7. M. U. Gonzalez, A. L. Stepanov, J. C. Weeber, A. Hohenau, A. Dereux, R. Quidant, and J. R. Krenn, "Analysis of the angular acceptance of surface plasmon Bragg mirrors," Opt. Lett. 32, 2704-2706 (2007). [CrossRef] [PubMed]
  8. M. U. Gonzalez, J. C. Weeber, A. L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, and T. W. Ebbesen, "Design, near-field characterization, and modeling of 45 circle surface-plasmon Bragg mirrors," Phys. Rev. B 73, 155416 (2006). [CrossRef]
  9. H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, "Two-dimensional optics with surface plasmon polaritons," Appl. Phys. Lett. 81, 1762-1764 (2002). [CrossRef]
  10. P. Marthandam and R. Gordon, "Plasmonic Bragg reflectors for enhanced extraordinary optical transmission through nano-hole arrays in a gold film," Opt. Express 15, 12995-13002 (2007). [CrossRef] [PubMed]
  11. I. M. Lee, J. Jung, J. Park, H. Kim, and B. Lee, "Dispersion characteristics of channel plasmon polariton waveguides with step-trench-type grooves," Opt. Express 15, 16596-16603 (2007). [CrossRef] [PubMed]
  12. E. Feigenbaum and M. Orenstein, "Modeling of complementary (void) plasmon waveguiding," J. Lightwave Technol. 25, 2547-2562 (2007). [CrossRef]
  13. Y. Satuby and M. Orenstein, "Surface-Plasmon-Polariton modes in deep metallic trenches- measurement and analysis," Opt. Express 15, 4247-4252 (2007). [CrossRef] [PubMed]
  14. Y. Q. Fu, W. Zhou, L. E. N. Lim, C. Du, H. Shi, C. Wang, and X. Luo, "Influence of V-shaped plasmonic nanostructures on beam propagation," Appl Phys B-Lasers 86, 461-466 (2007). [CrossRef]
  15. H. A. Jamid and S. J. Al-Bader, "Reflection and transmission of surface plasmon mode at a step discontinuity," IEEE Photon. Technol. Lett. 9, 220-222 (1997). [CrossRef]
  16. P. Ginzburg, and M. Orenstein, "Plasmonic transmission lines: from micro to nano scale with ?/4 impedance matching," Opt. Express 15, 6762-6767, (2007). [CrossRef] [PubMed]
  17. Lumerical Solutions, Inc., http://www.lumerical.com.
  18. P. B. Johnson and R. W. Christy, "Optical-Constants of Noble-Metals," Phys. Rev. B 6, 4370-4379 (1972). [CrossRef]
  19. T. Søndergaard and S. Bozhevolnyi, "Slow-plasmon resonant nanostructures: Scattering and ??eld enhancements," Phys. Rev. B 75, 073402 (2007). [CrossRef]
  20. R. Gordon, "Light in a subwavelength slit in a metal: Propagation and reflection," Phys. Rev. B 73, 153405 (2006). [CrossRef]
  21. C. Genet, M. P. van Exter, and J. P. Woerdman, "Fano-type interpretation of red shifts and red tails in hole array transmission spectra," Opt. Commun. 225, 331-336, (2003). [CrossRef]
  22. K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, "Ultrasensitive Chemical Analysis by Raman Spectroscopy, " Chem. Rev. 99, 2957 - 2976 (1999). [CrossRef]
  23. A. Lesuffleur, L. K. S. Kumar, A. G. Brolo, K. L. Kavanagh, and R. Gordon, "Apex-enhanced Raman spectroscopy using double-hole arrays in a gold film," J Phys Chem C 111, 2347-2350 (2007). [CrossRef]
  24. F. Mahdavi, Y. Liu, and S. Blair, "Modeling fluorescence enhancement from metallic nanocavities," Plasmonics 2, 129-141 (2007). [CrossRef]
  25. A. G. Brolo, S. C. Kwok, M. G. Moffitt, R. Gordon, J. Riordon, and K. L. Kavanagh, "Enhanced Fluorescence from Arrays of Nanoholes in a Gold Film," J. Am. Chem. Soc. 127, 14936-14941 (2005). [CrossRef] [PubMed]
  26. G. W. Lu, B. L. Cheng, H. Shen, Y. L. Zhou, Z. H. Chen, G. Z. Yang, O. Tillement, S. Roux, and P. Perriat, "Fabry-Perot type sensor with surface plasmon resonance," Appl. Phys. Lett. 89, 223904 (2006). [CrossRef]
  27. A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, "Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films," Langmuir 20, 4813-4815 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited