OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 13 — Jun. 23, 2008
  • pp: 9857–9868

Enzymatic degradation of human skin dermis revealed by fluorescence and reflectance spectroscopy

Ye Yuan and Patricia Relue  »View Author Affiliations

Optics Express, Vol. 16, Issue 13, pp. 9857-9868 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (244 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Dermis is the major source of the fluorescence and light scattering of skin. Tumor-induced degradation of the dermis is expected to change the fluorescence and light scattering properties of skin. To investigate how these fluorescence and light scattering properties are changed, human skin dermis was degraded with enzymes to mimic tumor invasion. The enzymatic erosion process was investigated with fluorescence and reflectance spectroscopy. Dermis degradation by the enzymes resulted in a decrease in fluorescence emission and light scattering in the dermis. Fluorescence anisotropy, however, could not detect the change in the dermis induced by the enzyme treatments.

© 2008 Optical Society of America

OCIS Codes
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics
(170.6930) Medical optics and biotechnology : Tissue

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: December 5, 2007
Revised Manuscript: March 3, 2008
Manuscript Accepted: June 9, 2008
Published: June 20, 2008

Virtual Issues
Vol. 3, Iss. 7 Virtual Journal for Biomedical Optics

Ye Yuan and Patricia Relue, "Enzymatic degradation of human skin dermis revealed by fluorescence and reflectance spectroscopy," Opt. Express 16, 9857-9868 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. Ramanujam, "Fluorescence spectroscopy of neoplastic and non-neoplastic tissues," Neoplasia 2, 89-117 (2000). [CrossRef] [PubMed]
  2. T. J. Romer, M. Fitzmaurice, R. M. Cothren, R. Richards-Kortum, R. Petras, M. V. Sivak Jr., and J. R. Kramer Jr, "Laser-induced fluorescence microscopy of normal colon and dysplasia in colonic adenomas: implications for spectroscopic diagnosis," Am. J. Gastroenterol. 90, 81-87 (1995). [PubMed]
  3. B. Mayinger, M. Jordan, P. Horner, C. Gerlach, S. Muehldorfer, B. R. Bittorf, K. E. Matzel, W. Hohenberger, E. G. Hahn, and K. Guenther, "Endoscopic light-induced autofluorescence spectroscopy for the diagnosis of colorectal cancer and adenoma," J. Photochem. Photobiol. B 70, 13-20 (2003). [CrossRef] [PubMed]
  4. I. Georgakoudi, E. E. Sheets, M. G. Muller, V. Backman, C. P. Crum, K. Badizadegan, R. R. Dasari, and M. S. Feld, "Trimodal spectroscopy for the detection and characterization of cervical precancers in vivo," Am. J. Obstet. Gynecol. 186, 374-382 (2002). [CrossRef] [PubMed]
  5. I. Pavlova, K. Sokolov, R. Drezek, A. Malpica, M. Follen, and R. Richards-Kortum, "Microanatomical and biochemical origins of normal and precancerous cervical autofluorescence using laser-scanning fluorescence confocal microscopy," Photochem. Photobiol. 77, 550-555 (2003). [CrossRef] [PubMed]
  6. I. Georgakoudi, B. C. Jacobson, M. G. Muller, E. E. Sheets, K. Badizadegan, D. L. Carr-Locke, C. P. Crum, C. W. Boone, R. R. Dasari, J. Van Dam, and M. S. Feld, "NAD(P)H and collagen as in vivo quantitative fluorescent biomarkers of epithelial precancerous changes," Cancer Res. 62, 682-687 (2002). [PubMed]
  7. T. Vo-Dinh, M. Panjehpour, B. F. Overholt, C. E. Julius, S. Overholt, and M. N. Phan, "Laser-induced fluorescence for the detection of esophageal and skin cancer," Adv. Biomed. Clin. Diagn. Syst. 4958, 67-70 (2003).
  8. .U. Utzinger, N. D. Kirkpatrick, R. A. Drezek, and M. A. Brewer, "Endogenous fluorescence emission of the ovary," in Optical Diagnostics and Sensing V, A. V. Priezzhev and G. L. Cote, eds., Proc. SPIE 5702, 92-96 (2005). [CrossRef]
  9. Z. Huang, H. M. Cheah, T.-C. Chia, and T. L. Ching, "Laser-induced microscopic fluorescence and images of skin tissues," in Laser Microscopy, K. Koenig, H. J. Tanke and H. Schneckenburger, eds., Proc. SPIE 4164, 43-47 (2000). [CrossRef]
  10. R. Na, I. M. Stender, and H. C. Wulf, "Can autofluorescence demarcate basal cell carcinoma from normal skin? A comparison with protoporphyrin IX fluorescence," Acta Derm.-Venereol. 81, 246-249 (2001). [CrossRef] [PubMed]
  11. L. Brancaleon, A. J. Durkin, J. H. Tu, G. Menaker, J. D. Fallon, and N. Kollias, "In vivo fluorescence spectroscopy of nonmelanoma skin cancer," Photochem. Photobiol. 73, 178-183 (2001). [CrossRef] [PubMed]
  12. M. Panjehpour, C. E. Julius, M. N. Phan, T. Vo-Dinh, and S. Overholt, "Laser-induced fluorescence spectroscopy for in vivo diagnosis of non-melanoma skin cancers," Laser Surg. Med. 31, 367-373 (2002). [CrossRef]
  13. R. Richards-Kortum and E. Sevick-Muraca, "Quantitative optical spectroscopy for tissue diagnosis," Annu. Rev. Phys. Chem. 47, 555-606 (1996). [CrossRef] [PubMed]
  14. I. Georgakoudi, B. C. Jacobson, J. Van Dam, V. Backman, M. B. Wallace, M. G. Muller, Q. Zhang, K. Badizadegan, D. Sun, G. A. Thomas, L. T. Perelman, and M. S. Feld, "Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett's esophagus," Gastroenterology 120, 1620-1629 (2001). [CrossRef] [PubMed]
  15. G. K. Steigleder and R. Uerdingen, "Response of collagenous tissue to pigmented tumors," Hautarzt 27, 153-154 (1976). [PubMed]
  16. D. E. Woolley and C. A. Grafton, "Collagenase immunolocalization studies of cutaneous secondary melanomas," Brit. J. Cancer 42, 260-265 (1980). [CrossRef] [PubMed]
  17. K. Sokolov, M. Follen, and R. Richards-Kortum, "Optical spectroscopy for detection of neoplasia," Curr. Opin. Chem. Biol. 6, 651-658 (2002). [CrossRef] [PubMed]
  18. Y. Yuan, "Investigation of skin and skin components using polarized fluorescence and polarized reflectance towards the detection of cutaneous melanoma," Ph.D. dissertation, The University of Toledo, Toledo, OH, 2006.
  19. D. R. Ralston, C. Layton, A. J. Dalley, S. G. Boyce, E. Freedlander, and S. Mac Neil, "The requirement for basement membrane antigens in the production of human epidermal/dermal composites in vitro," Brit. J. Dermatol. 140, 605-615 (1999). [CrossRef]
  20. M. Regnier, M. Prunieras, and D. Woodley, "Growth and differentiation of adult human epidermal cells on dermal substrates," Front Matrix Biol. 9, 4-35 (1981).
  21. N. Kollias, R. Gillies, M. Moran, I. E. Kochevar, and R. R. Anderson, "Endogenous skin fluorescence includes bands that may serve as quantitative markers of aging and photoaging," J. Invest. Dermatol. 111, 776-780 (1998). [CrossRef] [PubMed]
  22. B. Banerjee, B. E. Miedema, and H. R. Chandrasekhar, "Role of basement membrane collagen and elastin in the autofluorescence spectra of the colon," J. Invest. Med. 47, 326-332 (1999).
  23. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 2nd ed., (Kluwer Academic/Plenum, New York, 1999).
  24. X. Wang and L. V. Wang, "Propagation of polarized light in birefringent turbid media: A Monte Carlo study," J. Biomed. Opt. 7, 279-290 (2002). [CrossRef] [PubMed]
  25. P. R. Odetti, A. Borgoglio, and R. Rolandi, "Age-related increase of collagen fluorescence in human subcutaneous tissue," Metabolism 41, 655-658 (1992). [CrossRef] [PubMed]
  26. N. Kollias, G. Zonios, and G. N. Stamatas, "Fluorescence spectroscopy of skin," Shedding New Light on Disease: Optical Diagnostics for the New Millennium 28, 17-23 (2002).
  27. K. A. Piez and A. H. Reddi, Extracellular Matrix Biochemistry (Elsevier, New York, c1984).
  28. K. S. Stenn, R. Link, G. Moellmann, J. Madri, and E. Kuklinska, "Dispase, a neutral protease from Bacillus polymyxa, is a powerful fibronectinase and type IV collagenase," J. Invest. Dermatol. 93, 287-290 (1989). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited