OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 14 — Jul. 7, 2008
  • pp: 10110–10116

Self-trapping of optical vortices in waveguide lattices with a self-defocusing nonlinearity

Daohong Song, Cibo Lou, Liqin Tang, Xiaosheng Wang, Wei Li, Xingyu Chen, Kody J.H. Law, Hadi Susanto, P. G. Kevrekidis, Jingjun Xu, and Zhigang Chen  »View Author Affiliations


Optics Express, Vol. 16, Issue 14, pp. 10110-10116 (2008)
http://dx.doi.org/10.1364/OE.16.010110


View Full Text Article

Enhanced HTML    Acrobat PDF (601 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate the self-trapping of single- and double-charged optical vortices in waveguide lattices induced with a self-defocusing nonlinearity. Under appropriate conditions, a donut-shaped single-charged vortex evolves into a stable discrete gap vortex soliton, but a double-charged vortex turns into a self-trapped quadrupole-like structure. Spectrum measurement and numerical analysis suggest that the gap vortex soliton does not bifurcate from the edge of the Bloch band, quite different from previously observed gap spatial solitons. Our numerical findings are in good agreement with experimental observations.

© 2008 Optical Society of America

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(190.5330) Nonlinear optics : Photorefractive optics
(250.5530) Optoelectronics : Pulse propagation and temporal solitons

ToC Category:
Nonlinear Optics

History
Original Manuscript: April 8, 2008
Revised Manuscript: May 30, 2008
Manuscript Accepted: June 2, 2008
Published: June 23, 2008

Citation
Daohong Song, Cibo Lou, Liqin Tang, Xiaosheng Wang, Wei Li, Xingyu Chen, Kody J. Law, Hadi Susanto, P. G. Kevrekidis, Jingjun Xu, and Zhigang Chen, "Self-trapping of optical vortices in waveguide lattices with a self-defocusing nonlinearity," Opt. Express 16, 10110-10116 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-14-10110


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. N. Christodoulides, F. Lederer, and Y. Silberberg, "Discretetizing light behavior in linear and nonlinear waveguide lattices," Nature 424, 817 (2003). [CrossRef] [PubMed]
  2. Y. S. Kivshar and G. P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals (Acedemic, San Diego, Calif. 2003).
  3. D. N. Christodoulides and R. I. Joseph, "Discrete self-focusing in nonlinear arrays of coupled waveguides," Opt. Lett. 13, 794 (1988). [CrossRef] [PubMed]
  4. H. S. Eisenberg, Y. Silberberg, R. Morandotti, A. R. Boyd, and J. S. Aitchison, "Observation of discrete solitons in optical waveguide arrays," Phys. Rev. Lett. 81, 3383 (1998). [CrossRef]
  5. J. W. Fleischer, T. Carmon, M. Segev, N. K. Efremidis, and D. N. Christodoulides, "Observation of discrete solitons in optically induced real time waveguide arrays," Phys. Rev. Lett. 90, 023902 (2003). [CrossRef] [PubMed]
  6. J. W. Fleischer, M. Segev, N. K. Efremidis, and D. N. Christodoulides, "Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices," Nature 422, 147 (2003). [CrossRef] [PubMed]
  7. D. Neshev, E. Ostrovskaya, Y. Kivshar, and W. Królikowski, "Spatial solitons in optically induced gratings," Opt. Lett. 28, 710 (2003). [CrossRef] [PubMed]
  8. H. Martin, E. D. Eugenieva, Z. Chen, and D. N. Christodoulides, "Discrete solitons and soliton-induced dislocations in partially coherent photonic lattices," Phys. Rev. Lett. 92, 123902 (2004). [CrossRef] [PubMed]
  9. D. Mandelik, R. Morandotti, J. S. Aitchison, and Y. Silberberg, "Gap solitons in waveguide arrays," Phys. Rev. Lett. 92, 093904 (2004). [CrossRef] [PubMed]
  10. D. Neshev, A. A. Sukhorukov, B. Hanna, W. Krolikowski, and Y. S. Kivshar, "Controlled generation and steering of spatial gap solitons," Phys. Rev. Lett. 93, 083905 (2004). [CrossRef] [PubMed]
  11. F. Chen, M. Stepic, C. E. Ruter, D. Runde, D. Kip, V. Shandarov, O. Manela, and M. Segev, "Discrete diffraction and spatial gap solitons in photovoltaic LiNbO3 waveguide arrays," Opt. Express 13, 4314 (2005). [CrossRef] [PubMed]
  12. C. Lou, X. Wang, J. Xu, Z. Chen, and J. Yang, "Nonlinear spectum reshaping and gap-soliton-train trapping in optically inducd photonic structures," Phys. Rev. Lett. 98, 213903 (2007). [CrossRef] [PubMed]
  13. B. A. Malomed and P. G. Kevrekidis, "Discrete vortex solitons," Phys. Rev. E 64, 026601 (2001). [CrossRef]
  14. J. Yang and Z. H. Musslimani, "Fundamental and vortex solitons in a two-dimensional optical lattice," Opt. Lett. 28, 2094 (2003). [CrossRef] [PubMed]
  15. D. N. Neshev, T. J. Alexander, E. A. Ostrovskaya, Y. S. Kivshar, H. Martin, I. Makasyuk, Z. Chen, "Observation of discrete vortex solitons in optically-induced photonic lattices," Phys. Rev. Lett. 92, 123903 (2004). [CrossRef] [PubMed]
  16. J. W. Fleischer, G. Bartal, O. Cohen, O. Manela, M. Segev, J. Hudock, and D. N. Christodoulides, "Observation of vortex-ring discrete solitons in 2D photonic lattices," Phys. Rev. Lett. 92, 123904 (2004). [CrossRef] [PubMed]
  17. G. Bartal, O. Manela, O. Cohen, J. W. Fleicher, and M. Segev, "Observation of second-band vortex solitons in 2D photonic lattices," Phys. Rev. Lett. 95, 053904 (2005). [CrossRef] [PubMed]
  18. E. A. Ostrovskaya and Y. S. Kivshar, "Matter-wave gap vortices in optical lattices," Phys. Rev. Lett. 93, 160405 (2004). [CrossRef] [PubMed]
  19. P. G. Kevrekidis, H. Susanto, and Z. Chen, "High-order-mode soliton structures in two-dimensional lattices with defocusing nonlinearity," Phys. Rev. E 74, 066606 (2006). [CrossRef]
  20. T. Richter and F. Kaiser, "Anisotropic gap vortices in photorefractive media," Phys. Rev. A 76, 033818 (2007). [CrossRef]
  21. L. Tang, C. Lou, X. Wang, D. Song, X. Chen, J. Xu, Z. Chen, H. Susanto, K. Law, and P. G. Kevrekidis, "Observation of dipole-like gap solitons in self-defocusing waveguide lattices," Opt. Lett. 32, 3011 (2007). [CrossRef] [PubMed]
  22. N. K. Efremidis, S. Sears, D. N. Christodoulides, J. W. Fleischer, and M. Segev," Discrete solitons in photorefractive optically induced photonic lattices," Phys. Rev. E 66, 046602 (2002). [CrossRef]
  23. A. Bezryadina, E. Eugenieva, and Z. Chen, "Self-trapping and flipping of double-charged vortices in optically induced photonic lattices," Opt. Lett. 31, 2456 (2006). [CrossRef] [PubMed]
  24. G. Bartal, O. Cohen, H. Buljan, J. W. Fleischer, O. Manela, and M. Segev, "Brillouin zone spectroscopy of nonlinear photonic lattices," Phys. Rev. Lett. 94, 163902 (2005). [CrossRef] [PubMed]
  25. D. Träger, R. Fischer, D. N. Neshev, A. A. Sukhorukov, C. Denz, W. Krolikowski, and Y. S. Kivshar, "Nonlinear Bloch modes in two-dimensional photonic lattices," Opt. Express 14, 1913 (2006). [CrossRef] [PubMed]
  26. R. Fischer, D. Träger, D. N. Neshev, A. A. Sukhorukov, W. Krolikowski, C. Denz, and Y. S. Kivshar, "Reduced-symmetry two-dimensional solitons in photonic lattices," Phys. Rev. Lett. 96, 023905 (2006). [CrossRef] [PubMed]
  27. J. Yang, I. Makasyuk, A. Bezryadina, and Z. Chen, "Dipole solitons in optically induced two-dimensional photonic lattices," Opt. Lett. 29, 1662 (2004). [CrossRef] [PubMed]
  28. J. Wang and J. Yang, "Families of vortex solitons in periodic media," Phys. Rev. A 77, 033834 (2008). [CrossRef]
  29. M. �?ster and M. Johansson, "Stable stationary and quasiperiodic discrete vortex breathers with topological charge S=2," Phys. Rev. E 73, 066608 (2006). [CrossRef]
  30. E. A. Ostrovskaya, T. J. Alexander, and Y. S. Kivshar, "Generation and detection of matter-wave gap vortices in optical lattices," Phys. Rev. A 74, 023605 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited