OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 14 — Jul. 7, 2008
  • pp: 10178–10188

Cavity enhanced absorption spectroscopy of multiple trace gas species using a supercontinuum radiation source

J. M. Langridge, T. Laurila, R. S. Watt, R. L. Jones, C. F. Kaminski, and J. Hult  »View Author Affiliations

Optics Express, Vol. 16, Issue 14, pp. 10178-10188 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (1605 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Supercontinuum radiation sources are attractive for spectroscopic applications owing to their broad wavelength coverage, which enables spectral signatures of multiple species to be detected simultaneously. Here we report the first use of a supercontinuum radiation source for broadband trace gas detection using a cavity enhanced absorption technique. Spectra were recorded at bandwidths of up to 100 nm, encompassing multiple absorption bands of H2O, O2 and O2-O2. The same instrument was also used to make quantitative measurements of NO2 and NO3. For NO3 a detection limit of 3 parts-per-trillion in 2 s was achieved, which corresponds to an effective 3σ sensitivity of 2.4×10-9 cm-1Hz-1/2. Our results demonstrate that a conceptually simple and robust instrument is capable of highly sensitive broadband absorption measurements.

© 2008 Optical Society of America

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(300.0300) Spectroscopy : Spectroscopy
(300.1030) Spectroscopy : Absorption

ToC Category:

Original Manuscript: May 2, 2008
Revised Manuscript: June 10, 2008
Manuscript Accepted: June 11, 2008
Published: June 23, 2008

J. M. Langridge, T. Laurila, R. S. Watt, R. L. Jones, C. F. Kaminski, and J. Hult, "Cavity enhanced absorption spectroscopy of multiple trace gas species using a supercontinuum radiation source," Opt. Express 16, 10178-10188 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Th. Udem, R. Holzwarth, and T. Hänsch, "Optical frequency metrology," Nature 416, 233-237 (2002). [CrossRef] [PubMed]
  2. J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, "White-Light Filaments for Atmospheric Analysis," Science 301, 61-64 (2003). [CrossRef] [PubMed]
  3. M. Y. Sfeir, F. Wang, L. Huang, C.-C. Chuang, J. Hone, S. P. O�??Brien, T. F. Heinz, and L. E. Brus, "Probing Electronic Transitions in Individual Carbon Nanotubes by Rayleigh Scattering," Science 306, 1540-1543 (2004). [CrossRef] [PubMed]
  4. A. Unterhuber, B. Považay, K. Bizheva, B. Hermann, H. Sattmann, A. Stingl, T. Le, M. Seefeld, R. Menzel, M. Preusser, H. Budka, C. Schubert, H. Reitsamer, P. K. Ahnelt, J. E. Morgan, A. Cowey, and W. Drexler, "Advances in broad bandwidth light sources for ultrahigh resolution optical coherence tomography," Phys. Med. Biol. 49, 1235-1246 (2004). [CrossRef] [PubMed]
  5. R. R. Alfano, The Supercontinuum Laser Source, 2nd Edition (Springer, New York, 2006). [PubMed]
  6. W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, "Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres," Nature 424, 511-515 (2003). [CrossRef] [PubMed]
  7. P. V. Kelkar, F. Coppinger, A. S. Bhushan, and B. Jalali, "Time-domain optical sensing," Electron. Lett. 35, 1661-1662 (1999). [CrossRef]
  8. S. T. Sanders, "Wavelength-agile fiber laser using group-velocity dispersion of pulsed super-continua and application to broadband absorption spectroscopy," Appl. Phys. B 75, 799-802 (2002). [CrossRef]
  9. J. Hult, R. S. Watt, and C. F. Kaminski, "High bandwidth absorption spectroscopy with a dispersed supercontinuum source," Opt. Express 15, 11385-11395 (2007). [CrossRef] [PubMed]
  10. M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, "Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection," Science 311, 1595-1599 (2006). [CrossRef] [PubMed]
  11. R. Engeln, G. Berden, R. Peeters, and G. Meijer, "Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy," Rev. Sci. Instrum. 69, 3763-3769 (1998). [CrossRef]
  12. A. O�??Keefe and D. A. G. Deacon, "Cavity ring-down optical spectrometer for absorption-measurements using pulsed laser sources," Rev. Sci. Instrum. 59, 2544-2551 (1988). [CrossRef]
  13. J. Ye and J. L. Hall, "Ultrasensitive detection in atomic and molecular physics: demonstration in molecular overtone spectroscopy," J. Opt. Soc. Am. B 15, 6-15 (1998). [CrossRef]
  14. J. Ye and J. L. Hall, "Cavity ringdown heterodyne spectroscopy: High sensitivity with microwatt power light power," Phys. Rev A 61, 061802 (2000). [CrossRef]
  15. S. M. Ball and R. L. Jones, "Broad-band cavity ring-down spectroscopy," Chem. Rev. 103, 5239-5262 (2003). [CrossRef] [PubMed]
  16. J. J. Scherer, J. B. Paul, H. Jiao, and A. O'Keefe, "Broadband ringdown spectral photography," Appl. Opt. 40, 6725-6732 (2001). [CrossRef]
  17. S. M. Ball, I. M. Povey, E. G. Norton, and R. L. Jones, "Broadband cavity ringdown spectroscopy of the NO3 radical," Chem. Phys. Lett. 342, 113-120 (2001). [CrossRef]
  18. M. J. Thorpe, D. D. Hudson, K. D. Moll, J. Lasri, and J. Ye, "Cavity-ringdown molecular spectroscopy based on an optical frequency comb at 1.45-1.65 μm," Opt. Lett. 32, 307-309 (2007). [CrossRef] [PubMed]
  19. M. J. Thorpe, D. Balslev-Clausen, M. S. Kirchner, and J. Ye, "Cavity-enhanced optical frequency comb spectroscopy: application to human breath analysis," Opt. Express 16, 2387-2397 (2008). [CrossRef] [PubMed]
  20. T. Gherman and D. Romanini, "Mode-locked cavity-enhanced absorption spectroscopy," Opt. Express 10, 1033-1042 (2002). [PubMed]
  21. T. Gherman, E. Eslami, D. Romanini, S. Kassi, J-C. Vial, and N. Sadeghi, "High sensitivity broad-band mode-locked cavity-enhanced absorption spectroscopy: measurement of Ar*(3P2) atom and N2+ ion densities," J. Phys. D 37, 2408-2415 (2004). [CrossRef]
  22. C. Gohle, B. Stein, A. Schliesser, T. Udem, and T. W. Hänsch, "Frequency comb vernier spectroscopy for broadband, high-resolution, high-sensitivity absorption and dispersion spectra," Phys. Rev. Lett. 99, 263902 (2007). [CrossRef]
  23. S.E. Fiedler, A. Hese, and A. A. Ruth, "Incoherent broad-band cavity-enhanced absorption spectroscopy," Chem. Phys. Lett. 371, 284-294 (2003). [CrossRef]
  24. D. S. Venables, T. Gherman, J. Orphal, J. C. Wenger, and A. A. Ruth, "High sensitivity in situ monitoring of NO3 in an atmospheric simulation chamber using incoherent broadband cavity-enhanced absorption spectroscopy," Environ. Sci. Technol. 40, 6758-6763 (2006). [CrossRef] [PubMed]
  25. S. M. Ball, J. M. Langridge, and R. L. Jones, "Broadband cavity enhanced absorption spectroscopy using light emitting diodes," Chem. Phys. Lett. 398, 68-74 (2004). [CrossRef]
  26. G. Meijer, M. G. H. Boogaarts, R. T. Jongma, D. H. Parker, and A. M. Wodtke, "Coherent cavity ringdown spectroscopy," Chem. Phys. Lett. 217, 112-116 (1994). [CrossRef]
  27. M. Triki, P. Cermak, G. Méjean, and D. Romanini, "Cavity-enhanced absorption spectroscopy with a red LED source for NOx trace analysis," Appl. Phys. B 91, 195-201 (2008). [CrossRef]
  28. J. M. Langridge, S. M. Ball, and R. L. Jones, "A compact broadband cavity enhanced absorption spectrometer for detection of atmospheric NO2," Analyst 131, 916-922 (2006). [CrossRef] [PubMed]
  29. T. Gherman, D. S. Venables, S. Vaughan, J. Orphal, and A. A. Ruth, "Incoherent broadband cavity enhanced absorption spectroscopy in the near-ultaviolet: application to HONO and NO2," Environ. Sci. Technol. 42, 890-895 (2008). [CrossRef] [PubMed]
  30. G. D. Greenblatt, J. J. Orlando, J. B. Burkholder, and A. R. Ravishankara, "Absorption measurements of oxygen between 330nm and 1140nm," J. Geophy.Res. 95, 18577-18582 (1990). [CrossRef]
  31. A. C. Vandaele, C. Hermans, P. C. Simon, M. Carleer, R. Colin, S. Fally, M. F. Mérienne, A. Jenouvrier, and B. Coquart, "Measurements of the NO2 absorption cross-section from 42000 cm-1 to 10000 cm-1 (238-1000 nm) at 220 K and 294 K," J.Quant. Spectrosc. Radiat. Transfer. 59, 171-184 (1998). [CrossRef]
  32. J. Orphal, C. E. Fellows, and P. -M. Flaud, "The visible absorption spectrum of NO3 measured by high-resolution Fourier transform spectroscopy," J. Geophys. Res. 108, 4077 (2003). [CrossRef]
  33. U. Platt, "Modern methods of the measurement of atmospheric trace gases," Phys. Chem. Chem. Phys. 24, 5409-5415 (1999). [CrossRef]
  34. E. J. Dunlea, S. C. Herndon, D. D. Nelson, R. M. Volkamer, F. San Martini, P. M. Sheehy, M. S. Zahniser, J. H. Shorter, J. C. Wormhoudt, B. K. Lamb, E. J. Allwine, J. S. Gaffney, N. A. Marley, M. Grutter, C. Marquez, S. Blanco, B. Cardenas, A. Retama, C. R. Ramos Villegas, C. E. Kolb, L. T. Molina, and M. J. Molina, "Evaluation of nitrogen dioxide chemiluminescence monitors in a polluted urban environment," Atmos. Chem. Phys. 7, 2691-2704 (2007). [CrossRef]
  35. W. R. Simpson, "Continuous wave cavity ring-down spectroscopy applied to in situ detection of dinitrogen pentoxide (N2O5)," Rev. Sci. Instrum. 74, 3442-3452 (2003). [CrossRef]
  36. J. D. Ayers, R. L. Apodaca, W. R. Simpson, and D. S. Baer, "Off-axis cavity ringdown spectroscopy: application to atmospheric nitrate radical detection," Appl. Opt. 44, 7239-7242 (2005). [CrossRef] [PubMed]
  37. W. P. Dubé, S. S. Brown, H. D. Osthoff, M. R. Nunley, S. J. Ciciora, M. W. Paris, R. J. McLaughlin, and A. R. Ravishankara, "Aircraft instrument for simultaneous, in situ measurement of NO3 and N2O5 via pulsed cavity ring-down spectroscopy," Rev. Sci. Instrum. 77, 034101 (2006). [CrossRef]
  38. C. Vallance, "Innovations in cavity ringdown spectroscopy," New J. Chem. 29, 867-874 (2005). [CrossRef]
  39. S. A. Diddams, L. Hollberg, and V. Mbele, "Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb," Nature 445, 627-630 (2007). [CrossRef] [PubMed]
  40. E. Sorokin, I. T. Sorokina, J. Mandon, G. Guelachvili, and N. Picque, "Sensitive multiplex spectroscopy in the molecular fingerprint 2.4 μm region with a Cr2+:ZnSe femtosecond laser," Opt. Express 15, 16540-16545 (2007). [CrossRef] [PubMed]
  41. A. A. Ruth, J. Orphal, and S. E. Fiedler, "Fourier-transform cavity-enhanced absorption spectroscopy using an incoherent broadband light source," Appl. Opt. 46, 3611-3616 (2007) [CrossRef] [PubMed]
  42. A. Kudlinski, A. K. George, J. C. Knight, J. C. Travers, A. B. Rulkov, S. V. Popov, and J. R. Taylor, "Zero-dispersion wavelength decreasing photonic crystal fibers for ultraviolet-extended supercontinuum generation," Opt. Express 14, 5715-5722 (2006). [CrossRef] [PubMed]
  43. C. Xia, M. Kumar, O. P. Kulkarni, M. N. Islam, F. L. Terry, M. J. Freeman, M. Poulain, and G. Mazé, "Power scalable mid-infrared supercontinuum generation in ZBLAN fluoride fibers with up to 1.3 watts time-averaged power," Opt. Express 15, 865-871 (2007). [CrossRef] [PubMed]
  44. S. E. Fiedler, A. Hese, and A. A. Ruth, "Incoherent broad-band cavity-enhanced absorption spectroscopy of liquids" Rev. Sci. Instum. 76, 023107 (2005). [CrossRef]
  45. M. Mazurenka, L. Wilkins, J. V. Macpherson, P. R. Unwin, and S. R. Mackenzie, "Evanescent Wave Cavity Ring-Down Spectroscopy in a Thin-Layer Electrochemical Cell," Anal. Chem. 78, 6833-6839 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited