OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 14 — Jul. 7, 2008
  • pp: 10294–10302

Surface plasmon resonance in two-dimensional nanobottle arrays

H. Iu, J. Li, H. C. Ong, and Jones T. K. Wan  »View Author Affiliations

Optics Express, Vol. 16, Issue 14, pp. 10294-10302 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (558 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report our recent work on surface plasmon polaritons manipulation of two-dimensional arrays of subwavelength bottle-shaped cavities on gold surface. By tuning the geometry of such “nanobottle” it is possible to control the resonant frequencies and near field patterns of different surface plasmon resonances. The plasmonic band structures are not sensitive to the sizes and depths of the nano-bottles, but depend strongly on the polarization. In particular, by using different polarizations, it is observed that different types of plasmonic resonances, whether propagating or localized, can be excited independently. Moreover, we find that the local field and field intensity can by fine-tuned by controlling the topology of the bottleneck of the nanobottle. As a result, we believe these nanobottle arrays are useful for making plasmonic devices.

© 2008 Optical Society of America

OCIS Codes
(050.5298) Diffraction and gratings : Photonic crystals
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Diffraction and Gratings

Original Manuscript: March 13, 2008
Revised Manuscript: June 24, 2008
Manuscript Accepted: June 25, 2008
Published: June 26, 2008

H. Iu, J. Li, H. C. Ong, and Jones T. K. Wan, "Surface plasmon resonance in two-dimensional nanobottle arrays," Opt. Express 16, 10294-10302 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Raether, Surface Plasmons (Springer, Berlin, 1988).
  2. F. J. Garcia de Abajo, "Colloquium: Light scattering by particle and hole arrays," Rev. Mod. Phys 79, 1267-1290 (2007). [CrossRef]
  3. W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003). [CrossRef] [PubMed]
  4. S. Lal, S. Link, and N. J. Halas, "Nano-optics from sensing to waveguiding," Nat. Photonics 1, 641-648 (2007). [CrossRef]
  5. Y. D. Wilde, F. Formanek, R. Carminati, B. Gralak, P.-A. Lemoine, K. Joulain, J.-P. Mulet, Y. Chen, and J.-J. Greffet, "Thermal radiation scanning tunnelling microscopy," Nature 444, 740-743 (2006). [CrossRef] [PubMed]
  6. C. Billaudeau, S. Collin, F. Pardo, N. Bardou, and J.-L. Pelouard, "Toward tunable light propagation and emission in thin nanostructured plasmonic waveguides," Appl. Phys. Lett. 92, 041111 (2008). [CrossRef]
  7. J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, "Coherent emission of light by thermal sources," Nature 416, 61-64 (2002). [CrossRef] [PubMed]
  8. K. Kneipp, M. Moskovits, and H. Kneipp, eds., Surface-Enhanced Raman Scattering: Physics and Application (Springer, Berlin, 2006). [CrossRef]
  9. M. A. Schmidt, L. N. Prill Sempere, H. K. Tyagi, C. G. Poulton, and P. S. J. Russell, "Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires," Phys. Rev. B 77, 033417 (2008). [CrossRef]
  10. S. C. Kitson, W. L. Barnes, and J. R. Samble, "Full Photonic Band Gap for Surface Modes in the Visible," Phys. Rev. Lett. 77, 2670-2673 (1996). [CrossRef] [PubMed]
  11. J. B. Pendry, L. Martin-Moreno, and F. J. Garc�??ıa-Vidal, "Mimicking Surface Plasmons with Structured Surfaces," Science 305, 847-848 (2004). [CrossRef] [PubMed]
  12. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998). [CrossRef]
  13. W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T.W. Ebbesen, "Surface Plasmon Polaritons and Their Role in the Enhanced Transmission of Light through Periodic Arrays of Subwavelength Holes in a Metal Film," Phys. Rev. Lett. 92, 107401 (2004). [CrossRef] [PubMed]
  14. E. Popov, M. Neviere, S. Enoch, and R. Reinisch, "Theory of light transmission through subwavelength periodic hole arrays," Phys. Rev. B 62, 16100-16108 (2000). [CrossRef]
  15. T. A. Kelf, Y. Sugawara, J. J. Baumberg, M. Abdelsalam, and P. Bartlett, "Plasmonic Band Gaps and Trapped Plasmons on Nanostructured Metal Surfaces," Phys. Rev. Lett. 95, 116802 (2005). [CrossRef] [PubMed]
  16. E. Moreno, L. Martin-Moreno, and F. J. Garc�??ıa-Vidal, "Extraordinary optical transmission without plasmons: the s-polarization case," J. Opt. A: Pure Appl. Opt. 8, S94-S97 (2006). [CrossRef]
  17. F. I. Baida and D. Van Labeke, "Three-dimensional structures for enhanced transmission through a metallic film: Annular aperture arrays," Phys. Rev. B 67, 155314 (2003). [CrossRef]
  18. J. Li, H. Iu, W. C. Luk, J. T. K. Wan, and H. C. Ong, "Large area two-dimensional plasmonic nanobottle arrays fabricated by interference lithography," Appl. Phys. Lett. 92, 213106 (2008). [CrossRef]
  19. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House Publishers, Norwood, 2005).
  20. A. Farjadpour, D. Roundy, A. Rodriguez, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, and G. W. Burr, "Improving accuracy by subpixel smoothing in the finite-difference time domain," Opt. Lett. 31, 2972-2974 (2006). [CrossRef] [PubMed]
  21. MEEP FDTD package from MIT. http://ab-initio.mit.edu/wiki/index.php/Meep.
  22. A. Vial, A.-S. Grimault, D. Macias, D. Barchiesi, and M. Lamy de la Chapelle, "Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method," Phys. Rev. B 71, 085416 (2005). [CrossRef]
  23. S. Fan and J. D. Joannopoulos, "Analysis of guided resonances in photonic crystal slabs," Phys. Rev. B 65, 235112 (2002). [CrossRef]
  24. K. W. Yu and J. T. K. Wan, "Interparticle force in polydisperse electrorheological fluids," Comput. Phys. Commun. 129, 177-184 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited