OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 14 — Jul. 7, 2008
  • pp: 10315–10322

Cavity resonances of metal-dielectric-metal nanoantennas

Bhuwan P. Joshi and Qi-Huo Wei  »View Author Affiliations


Optics Express, Vol. 16, Issue 14, pp. 10315-10322 (2008)
http://dx.doi.org/10.1364/OE.16.010315


View Full Text Article

Enhanced HTML    Acrobat PDF (1226 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a new design of optical nanoantennas and numerically study their optical properties. The nanoantennas are composed of two cylindrical metal nanorods stacked vertically with a circular dielectric disk spacer. Simulation results show that when the dielectric disk is less than 5nm in thickness, such nanoantennas exhibit two types of resonances: one corresponding to antenna resonance, the other corresponding to cavity resonances. The antenna resonance generates a peak in scattering spectra, while the cavity resonances lead to multiple dips in the scattering spectra. The cavity resonant frequency can be tuned by varying the size of the dielectric disk. The local field enhancement inside the cavity is maximized when the diameter of the dielectric disk is roughly half that of the rod and when the cavity and antenna resonant frequencies coincide with each other. This new nanoantenna promises applications in single molecule surface enhanced Raman spectroscopy (SERS) owing to its high local field enhancements and large scale manufacturability.

© 2008 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(240.6690) Optics at surfaces : Surface waves
(160.4236) Materials : Nanomaterials

ToC Category:
Optics at Surfaces

History
Original Manuscript: April 7, 2008
Revised Manuscript: June 17, 2008
Manuscript Accepted: June 20, 2008
Published: June 26, 2008

Virtual Issues
Vol. 3, Iss. 8 Virtual Journal for Biomedical Optics

Citation
Bhuwan P. Joshi and Qi-Huo Wei, "Cavity resonances of metal-dielectric-metal nanoantennas," Opt. Express 16, 10315-10322 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-14-10315


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. I. Stockman, "Nanofocusing of optical energy in tapered plasmonic waveguide," Phys. Rev. Lett. 93, 137404 (2004). [CrossRef] [PubMed]
  2. D. K. Gramotnev, and K. C. Vernon, "Adiabatic nano-focusing of plasmons by sharp metallic wedges," Appl. Phys. B-Lasers Opt. 86, 7-17 (2007). [CrossRef]
  3. E. Verhagen, A. Polman, and L. Kuipers, "Nanofocusing in laterally tapered plasmonic waveguides," Opt. Express 16, 45-57 (2008). [CrossRef] [PubMed]
  4. H. X. Xu, J. Aizpurua, M. Kall, and P. Apell, Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering. Phys. Rev. E 62, 4318-4324 (2000). [CrossRef]
  5. H. X. Xu, E. J. Bjerneld, M. Kall, and L. Borjesson, "Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering," Phys. Rev. Lett. 83, 4357-4360 (1999). [CrossRef]
  6. L. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, "Subwavelength focusing and guiding of surface plasmons," Nano Lett. 5, 1399-1402 (2005). [CrossRef] [PubMed]
  7. H. T. Miyazaki, and Y. Kurokawa, "Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity," Phys. Rev. Lett. 96, 097401(2006). [CrossRef] [PubMed]
  8. V. M. Shalaev, Nonlinear Optics of Random Media: Fractal Composites and Metal-Dielectric Films, (Springer, Berlin Heidelberg, 2000).
  9. P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, "Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas," Phys. Rev. Lett. 94, 017402 (2005). [CrossRef] [PubMed]
  10. J. R. Lakowicz, "Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission," Anal. Biochem. 337, 171-194 (2005). [CrossRef] [PubMed]
  11. E. Fort, and S. Gresillon, "Surface enhanced fluorescence," J. Phys. D-Appl. Phys. 41, 013001 (2008). [CrossRef]
  12. M. Fleischman, P. J. Hendra, and A. J. McQuillan, Chem. Phys. Lett. 26, 123 (1974). [CrossRef]
  13. M. Moskovits, "Surface Enhanced Raman Spectroscopy," Rev. of Mod. Phys. 57, 783-826 (1985). [CrossRef]
  14. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari, and M. S. Feld, "Single molecule detection using surface-enhanced Raman scattering (SERS)," Phys. Rev. Lett. 78, 1667-1670 (1997). [CrossRef]
  15. S. M. Nie, and S. R. Emery, "Probing single molecules and single nanoparticles by surface-enhanced Raman scattering," Science 275, 1102-1106 (1997). [CrossRef] [PubMed]
  16. J. Jiang, K. Bosnick, M. Maillard, and L. Brus, "Single molecule Raman spectroscopy at the junctions of large Ag nanocrystals," J. Phys. Chem. B 107, 9964-9972 (2003). [CrossRef]
  17. E. Hao, and G. C. Schatz, "Electromagnetic fields around silver nanoparticles and dimmers," J. Chem. Phys. 120, 357-366 (2004). [CrossRef] [PubMed]
  18. A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, and W. E. Moerner, "Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles," Phys. Rev. B 72, 165409 (2005). [CrossRef]
  19. P. Muhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant optical antennas," Science 308, 1607-1609 (2005). [CrossRef] [PubMed]
  20. E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, "Plasmonic laser antenna," Appl. Phys. Lett. 89, 093102 (2006). [CrossRef]
  21. Y. Alaverdyan, B. Sepulveda, L. Eurenius, E. Olsson, and M. Kall, "Optical antennas based on coupled nanoholes in thin metal films," Nat. Phys. 3, 884-889 (2007). [CrossRef]
  22. K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, "Interparticle coupling effects on plasmon resonances of nanogold particles," Nano Lett. 3, 1087-1090 (2003). [CrossRef]
  23. T. Atay, J. H. Song, and A. V. Nurmikko, "Strongly interacting plasmon nanoparticle pairs: From dipole-dipole interaction to conductively coupled regime," Nano Lett. 4, 1627-1631 (2004). [CrossRef]
  24. D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, "Gap-dependent optical coupling of single "Bowtie" nanoantennas resonant in the visible," Nano Lett. 4, 957-961 (2004).
  25. K. H., Su, Q. H. Wei, and X. Zhang, "Tunable and augmented plasmon resonances of Au/SiO2/Au nanodisks," Appl. Phys. Lett. 88, 063118 (2006). [CrossRef]
  26. L. D. Qin, S. L. Zou, C. Xue, A. Atkinson, G. C. Schatz, and C. A. Mirkin, "Designing, fabricating, and imaging Raman hot spots," Proc. Natl. Acad. Sci. USA 103, 13300-13303 (2006). [CrossRef]
  27. K. H. Su, S. Durant, J. M. Steele, Y. Xiong, C. Sun, and X. Zhang, "Raman enhancement factor of a single tunable nanoplasmonic resonator," J. Phys. Chem. B 110, 3964-3968 (2006). [CrossRef] [PubMed]
  28. W. Gasser, Y. Uchida, and M. Matsumura, "Quasi-monolayer deposition of silicon dioxide," Thin Solid Films 250, 213-218 (1994). [CrossRef]
  29. J. W. Klaus, O. Sneh, A. W. Ott, and S. M. George, "Atomic layer deposition of SiO2 using catalyzed and uncatalyzed self-limiting surface reactions," Surf. Rev. Lett. 6, 435-448(1999). [CrossRef]
  30. Z. W. Liu, Q. H. Wei, and X. Zhang, "Surface plasmon interference nanolithography," Nano Lett. 5, 957-961(2005). [CrossRef] [PubMed]
  31. P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370(1972). [CrossRef]
  32. Y. Kurokawa, and H. T. Miyazaki, "Metal-insulator-metal plasmon nanocavities: Analysis of optical properties," Phys. Rev. B. 75, 035411(2007). [CrossRef]
  33. S. I. Bozhevolnyi and T. Søndergaard, "General properties of slow-plasmon resonant nanostructures: nano-antennas and resonators," Opt. Express 15, 10869-10877 (2007). [CrossRef] [PubMed]
  34. N. Engheta, A. Salandrino, and A. Alu, "Circuit elements at optical frequencies: Nanoinductors, nanocapacitors, and nanoresistors," Phys. Rev. Lett. 95, 095504 (2005). [CrossRef] [PubMed]
  35. N. Engheta, "Circuits with light at nanoscales: Optical nanocircuits inspired by metamaterials," Science 317, 1698-1702 (2007). [CrossRef] [PubMed]
  36. E. C., Le Ru, C. Galloway, and P. G. Etchegoin, "On the connection between optical absorption/extinction and SERS enhancements," Phys. Chem. Chem. Phys. 8, 3083-3087 (2006).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited