OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 14 — Jul. 7, 2008
  • pp: 10358–10363

Melt-processed all-polymer distributed Bragg reflector laser

Kenneth D. Singer, Tomasz Kazmierczak, Joseph Lott, Hyunmin Song, Yeheng Wu, James Andrews, Eric Baer, Anne Hiltner, and Christoph Weder  »View Author Affiliations

Optics Express, Vol. 16, Issue 14, pp. 10358-10363 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (180 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have assembled and studied melt-processed all-polymer lasers comprising distributed Bragg reflectors that were fabricated in large sheets using a co-extrusion process and define the cavities for dye-doped compression-molded polymer gain core sheets. Distributed Bragg reflector (DBR) resonators consisting of 128 alternating poly(styrene) (PS) and poly(methyl methacrylate) (PMMA) layers were produced by multilayer co-extrusion. Gain media were fabricated by compression-molding thermoplastic host polymers doped with organic laser dyes. Both processing methods can be used in high-throughput roll-to-roll manufacturing. Optically pumped DBR lasers assembled from these components display single and multimode lasing in the reflection band of the resonators, with a slope efficiency of nearly 19% and lasing thresholds as low as 90µJ/cm2. The lasing wavelength can be controlled via the layer thickness of the DBR resonator films, and variation of the laser dye. Studies of threshold and efficiency are in agreement with models for end-pumped lasers.

© 2008 Optical Society of America

OCIS Codes
(140.2050) Lasers and laser optics : Dye lasers
(160.5470) Materials : Polymers
(140.7260) Lasers and laser optics : Vertical cavity surface emitting lasers

ToC Category:
Lasers and Laser Optics

Original Manuscript: May 1, 2008
Revised Manuscript: June 20, 2008
Manuscript Accepted: June 20, 2008
Published: June 26, 2008

Kenneth D. Singer, Tomasz Kazmierczak, Joseph Lott, Hyunmin Song, Yeheng Wu, James Andrews, Eric Baer, Anne Hiltner, and Christoph Weder, "Melt-processed all-polymer distributed Bragg reflector laser," Opt. Express 16, 10358-10363 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. 1. I. D. W. Samuel, "Fantastic plastic," Nature 429, 709-711 (2004). [CrossRef] [PubMed]
  2. I. D. W. Samuel and G. A. Turnbull, "Organic semiconductor lasers," Chem. Rev. 107, 1272-1295 (2007). [CrossRef] [PubMed]
  3. P. K. H. Ho, D. S. Thomas, R. H. Friend, and N. Tessler, "All-polymer optoelectronic devices," Science 285, 233-236 (1999). [CrossRef] [PubMed]
  4. S. W. Kim, S. S. Oh, J. H. Park, E. H. Choi, Y. H. Seo, G. S. Cho, and B. Park, "One-dimensional birefringent photonic crystal laser," J. Appl. Phys. 103, 033103 (2008). [CrossRef]
  5. C. Kallinger, M. Hilmer, A. Haugeneder, M. Perner, W. Spirkl, U. Lemmer, J. Feldmann, U. Scherf, K. Mullen, A. Gombert, and V. Wittwer, "A flexible conjugated polymer laser," Adv. Mater. 10, 920-923 (1998). [CrossRef]
  6. S. Y. Chou, P. R. Krauss, and P. J. Renstrom, "Imprint of sub-25 nm vias and trenches in polymers," Appl. Phys. Lett. 67, 3114-3116 (1995). [CrossRef]
  7. M. Berggren, A. Dodabalapur, and R. E. Slusher, "Organic solid-state lasers with imprinted gratings on plastic substrates," Appl. Phys. Lett. 72, 410-411 (1998). [CrossRef]
  8. A. Roger, M. Meier, A. Dodabalapur, E. J. Laskowski, and M. A. Capuzzo, "Distributed feedback ridge waveguide lasers fabricated by nanoscale printing and molding on nonplanar substrates,"Appl. Phys. Lett. 64, 3257-3259 (1999). [CrossRef]
  9. T. Komikado, S. Yoshida, and S. Umegaki, "Surface-emitting distributed-feedback dye laser of a polymeric multilayer fabricated by spin coating," Appl. Phys. Lett. 89,061123 (2006). [CrossRef]
  10. J. Yoon, W. Lee, J. M. Caruge, M. Bawendi, E. L. Thomas, S. Kooi, and P. N. Prasad, "Defect-mode mirrorless lasing in dye-doped organic/inorganic hybrid one-dimensional photonic crystal," Appl. Phys. Lett. 88,091102 (2006). [CrossRef]
  11. H. Takeuchi, K. Natsume, S. Suzuki, and H. Sakata, "Microcavity distributed-feedback laser using dye-doped polymeric thin films," Electron. Lett. 43, 30-32 (2007). [CrossRef]
  12. T. Kazmierczak, H. Song, A. Hiltner, and E Baer, "Polymeric one-dimensional photonic crystals by continuous coextrusion," Macromol. Rapid Commun. 28, 2210-2216 (2007). [CrossRef]
  13. C. Löwe and C. Weder, "Synthesis and properties of photoluminescent 1,4-bis-(α-cyano-4-methoxystyryl)-benzenes," Synthesis  9, 1185-1190 (2002). [CrossRef]
  14. B. Crenshaw and C. Weder, "Thermally induced color changes in melt-processed photoluminescent polymer blends," Adv. Mater. 17, 1471-1476 (2005). [CrossRef]
  15. P. W. Milonni and J. H. Eberly, Lasers (John Wiley & Sons, 1991).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited