OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 14 — Jul. 7, 2008
  • pp: 10384–10389

Longitudinal coherence of organic-based microcavity lasers

Andrea Camposeo, Luana Persano, Pompilio Del Carro, Dimitris G. Papazoglou, Andreas Stassinopoulos, Demetrios Anglos, Roberto Cingolani, and Dario Pisignano  »View Author Affiliations

Optics Express, Vol. 16, Issue 14, pp. 10384-10389 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (439 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on the measurement of the longitudinal coherence of organic microcavity lasers based on a conjugated polymer. By using a modified Michelson interferometer configuration enabling single-shot measurements of the coherence length, the transition from spontaneous emission to lasing is investigated. The measured coherence length grows upon increasing the pumping fluence, saturating around 45 µm above threshold. At large fluences, possible thermal and photo-oxidation processes occurring in the gain medium limit the further increase of the coherence length. Our results are important for understanding lasing emission in organic microcavities and optimizing the device design and performances.

© 2008 Optical Society of America

OCIS Codes
(030.1640) Coherence and statistical optics : Coherence
(160.4890) Materials : Organic materials
(140.3945) Lasers and laser optics : Microcavities

ToC Category:
Lasers and Laser Optics

Original Manuscript: January 25, 2008
Revised Manuscript: March 13, 2008
Manuscript Accepted: May 5, 2008
Published: June 27, 2008

Andrea Camposeo, Luana Persano, Pompilio Del Carro, Dimitris G. Papazoglou, Andreas Stassinopoulos, Demetrios Anglos, Roberto Cingolani, and Dario Pisignano, "Longitudinal coherence of organic-based microcavity lasers," Opt. Express 16, 10384-10389 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. Jhe, A. Anderson, E. A. Hinds, D. Meschede, L. Moi, and S. Haroche, "Suppression of spontaneous decay at optical frequencies: Test of vacuum-field anisotropy in confined space," Phys. Rev. Lett. 58, 666-669 (1987). [CrossRef] [PubMed]
  2. F. De Martini and G. R. Jacobovitz, "Anomalous spontaneous-stimulated decay phase transition and zero-threshold laser action in a microscopic cavity," Phys. Rev. Lett. 60, 1711-1714 (1988). [CrossRef] [PubMed]
  3. N. Tessler, G. J. Denton, and R. H. Friend, "Lasing from conjugated polymer microcavities," Nature 382, 695-697 (1996). [CrossRef]
  4. S. Christopoulos, G. Baldassarri Höger von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A.V. Kavokin, J. J. Baumberg, G. Christmann, R. Buttè, E. Feltin, J.-F. Carlin, and N. Grandjean, "Room-temperature polariton lasing in semiconductor microcavities," Phys. Rev. Lett. 98, Art. N. 126405 (2007). [CrossRef] [PubMed]
  5. E. M. Purcell, "Spontaneous emission probabilities at radio frequencies," Phys. Rev. 69, 681 (1946).
  6. D. G. Lidzey, D. D. C. Bradley, M. S. Skolnick, T. Virgili, S. Walker, and D. M. Whittaker, "Strong exciton-photon coupling in an organic semiconductor microcavity," Nature 395, 53-55 (1998). [CrossRef]
  7. J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szyma�?ska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and Le Si Dang, "Bose-Einstein condensation of excitons polariton," Nature 443, 409-414 (2006). [CrossRef] [PubMed]
  8. A. Camposeo, L. Persano, P. Del Carro, T. Virgili, R. Cingolani, and D. Pisignano, "Polarization splitting in organic-based microcavities working in the strong coupling regime," Org. Electron. 8, 114-119 (2007). [CrossRef]
  9. I. D. W. Samuel and G. A. Turnbull, "Organic semiconductor lasers," Chem. Rev. 107, 1272-1295 (2007). [CrossRef] [PubMed]
  10. M. D. McGehee and A. J. Heeger, "Semiconducting (conjugated) polymers as materials for solid-state lasers," Adv. Mater. 12, 1655-1668 (2000). [CrossRef]
  11. J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, P. L. Burns, R. H. Friend, and A. B. Holmes, "Light-emitting diodes based on conjugated polymers," Nature 347, 539-541 (1990). [CrossRef]
  12. L. Persano, A. Camposeo, P. Del Carro, E. Mele, R. Cingolani, and D. Pisignano, "Very high-quality distributed Bragg reflectors for organic lasing applications by reactive electron-beam deposition," Opt. Express 14, 1951-1956 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-5-1951. [CrossRef] [PubMed]
  13. L. Persano, E. Mele, A. Camposeo, P. Del Carro, R. Cingolani, and D. Pisignano, "Absolute luminescence efficiency and photonic band-gap effect of conjugated polymers with top-deposited distribute Bragg reflectors," Chem. Phys. Lett. 411, 316-320 (2005). [CrossRef]
  14. L. Persano, A. Camposeo, P. Del Carro, E. Mele, R. Cingolani, and D. Pisignano, "Low-threshold blue-emitting monolithic polymer vertical cavity surface-emitting lasers," Appl. Phys. Lett. 89, Art. N. 121111 (2006). [CrossRef]
  15. L. Persano, P. Del Carro, E. Mele, R. Cingolani, D. Pisignano, M. Zavelani-Rossi, S. Longhi, and G. Lanzani, "Monolithic polymer microcavity lasers with on-top evaporated dielectric mirrors," Appl. Phys. Lett. 88, Art. N. 121110 (2006). [CrossRef]
  16. G. Wegmann, H. Giessen, A. Greiner, and R. F. Mahrt, "Laser emission from a solid conjugated polymer: Gain, tunability, and coherence," Phys. Rev. B 57, R4218-R4221 (1998). [CrossRef]
  17. V. M. Papadakis, A. Stassinopoulos, D. Anglos, S. H. Anastasiadis, E. P. Giannelis, and D. G. Papazoglou, "Single-shot temporal coherence measurements of random lasing media," J. Opt. Soc. Am. B 24, 31-36 (2007). [CrossRef]
  18. M. Born and E. Wolf, Principles of Optics (Cambridge U. Press, 1999).
  19. M. Nomura, S. Iwamoto, N. Kumagai, and Y. Arakawa, "Temporal coherence of a photonic crystal nanocavity laser with high spontaneous emission coupling factor," Phys. Rev. B 75, Art. N. 195313 (2007). [CrossRef]
  20. For sake of comparison, we recall that the maximum coherence length here measured is an order of magnitude lower than the value reported in Ref. [16] for a phenyl-substituted poly-(p-phenylenevinylene) polymer placed in an external cavity. In that system, a higher Q-factor (~1500) was achieved, leading to a cavity photon lifetime around 0.5 ps and hence to a longer coherence length, since lc�??�?c.
  21. J. L. A. Chilla, B. Benware, M. E. Watson, P. Stanko, J. J. Rocca, C. Wilmsen, S. Feld, and R. Leibenguth, "Coherence of VCSEL�??s for holographic interconnects," IEEE Photon. Technol. Lett. 7, 449-451 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited