OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 14 — Jul. 7, 2008
  • pp: 10465–10470

Reconfigurable optical channel waveguides in lithium niobate crystals produced by combination of low-dose O3+ ion implantation and selective white light illumination

Yang Tan, Feng Chen, Milutin Stepić, Vladimir Shandarov, and Detlef Kip  »View Author Affiliations


Optics Express, Vol. 16, Issue 14, pp. 10465-10470 (2008)
http://dx.doi.org/10.1364/OE.16.010465


View Full Text Article

Enhanced HTML    Acrobat PDF (418 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on a new method to form reconfigurable channel waveguides in lithium niobate crystals, based on a combination of low-dose O3+ ion implantation and selective white light illumination. The fabricated structures show low loss as well as rather high resistivity against optical erasure with red or infrared light, while at the same time reconfiguration of the structures remains possible using homogeneous white light illumination. The transmission properties of the channel waveguide modes can be well simulated numerically by the beam propagation method, which allows for the fabrication of tailored optical interconnections.

© 2008 Optical Society of America

OCIS Codes
(130.3730) Integrated optics : Lithium niobate
(190.5330) Nonlinear optics : Photorefractive optics
(230.7380) Optical devices : Waveguides, channeled

ToC Category:
Integrated Optics

History
Original Manuscript: May 2, 2008
Revised Manuscript: June 17, 2008
Manuscript Accepted: June 19, 2008
Published: June 27, 2008

Citation
Yang Tan, Feng Chen, Milutin Stepic, Vladimir Shandarov, and Detlef Kip, "Reconfigurable optical channel waveguides in lithium niobate crystals produced by combination of low-dose O3+ ion implantation and selective white light illumination," Opt. Express 16, 10465-10470 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-14-10465


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Kip, "Photorefractive waveguides in oxide crystals: fabrication, properties, and applications," Appl. Phys. B 67, 131-150 (1998). [CrossRef]
  2. J.-P. Liu, H.-Y. Lee, H.-F. Yau, Y.-Z. Chen, C.-C. Chang, and C. C. Sun, "One-beam recording in a LiNbO3 crystal," Opt. Lett. 30, 305-307 (2005). [CrossRef] [PubMed]
  3. Y. Guo, Y. Liao, L. Cao, G. Liu, Q. He, and G. Jin, "Improvement of photorefractive properties and holographic applications of lithium niobate crystal," Opt. Express 12, 5556-5561 (2004). [CrossRef] [PubMed]
  4. G. Zhang, Y. Tomita, X. Zhang, and J. Xu, "Near-infrared holographic recording with quasi-nonvolatile readout in LiNbO3:In,Fe," Appl. Phys. Lett. 81, 1393-1395 (2002). [CrossRef]
  5. P. Zhang, D. Yang, J. Zhao, and M. Wang, "Photo-written waveguides in iron-doped lithium niobate crystal employing binary optical masks," Opt. Eng. 45, 074603 (2006). [CrossRef]
  6. T. Song, S. M. Liu, R. Guo, Z. H. Liu, N. Zhu, and Y. M. Gao, "Observation of composite gap solitons in optically induced nonlinear lattices in LiNbO3:Fe crystal," Opt. Express 14, 1924-1932 (2006). [CrossRef] [PubMed]
  7. E. J. Murphy, Integrated Optical Circuits and Components: Design and applications (Marcel Dekker, New York, 1999).
  8. T. Jannson, "Information capacity of Bragg holograms in planar optics," J. Opt. Soc. Am. 71, 342-347 (1981). [CrossRef]
  9. D. J. Brady and D. Psaltis, "Holographic interconnections in photorefractive waveguides," Appl. Opt. 30, 2324-2333 (1991). [CrossRef] [PubMed]
  10. L. B. Aronson and L. Hesselink, "Photorefractive integrated-optical switch arrays in LiNbO3," Opt. Lett. 15, 30-32 (1990). [CrossRef] [PubMed]
  11. K. Itoh, O. Matoba, and Y. Ichioka, "Fabrication experiment of photorefractive three-dimensional waveguides in lithium niobate," Opt. Lett. 19, 652-654 (1994) [CrossRef] [PubMed]
  12. P. Zhang, Y. Ma, J. Zhao, D. Yang, and H. Xu, "One-dimensional spatial dark soliton-induced channel waveguides in lithium niobate crystal," Appl. Opt. 45, 2273-2278 (2006). [CrossRef] [PubMed]
  13. R. Jäger, S.-P. Gorza, C. Cambournac, M. Haelterman, and M. Chauvet, "Sharp waveguide bends induced by spatial solitons," Appl. Phys. Lett. 88, 061117 (2006). [CrossRef]
  14. E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, "Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides," Appl. Phys. Lett. 85, 2193-2195 (2004). [CrossRef]
  15. Herreros and G. Lifante, "LiNbO3 optical waveguides by Zn diffusion from vapor phase," Appl. Phys. Lett. 66, 1449-1451 (1995). [CrossRef]
  16. P. D. Townsend, P. J. Chandler, and L. Zhang, Optical Effects of Ion Implantation (Cambridge U. Press, Cambridge, 1994). [CrossRef]
  17. C. Couton, H. Maillotte, R. Giust, and M. Chauvet, "Formation of reconfigurable singlemode channel waveguides in LiNbO3 using spatial solitons," Electron. Lett. 39, 286-287 (2003). [CrossRef]
  18. Y. Tan, F. Chen, X. L. Wang, L. Wang, V. Shandarov, and D. Kip, "Formation of reconfigurable optical channel waveguides and beam splitters on top of proton-implanted lithium niobate crystals using spatial dark soliton-like structures," J. Phys. D 41, 102001 (2008). [CrossRef]
  19. M. Mitchell and M. Segev, "Self-trapping of incoherent white light," Nature 387, 880-883 (1997). [CrossRef]
  20. Y. Lu, S. Liu, G. Zhang, R. Guo, N. Zhu, and L. Yang, "Waveguides and directional couplers induced by white-light photovoltaic dark spatial solitons," J. Opt. Soc. Am. B 21, 1674-1678 (2004). [CrossRef]
  21. Y. Gao, S. Liu, R. Guo, X. Zhang, and Y. Lu, "White-light photorefractive phase mask," Appl. Opt. 44, 1533-1537 (2005). [CrossRef] [PubMed]
  22. F. Chen, X. L. Wang, and K. M. Wang, "Developments of ion implanted optical waveguides in optical materials: A review," Opt. Mater. 29, 1523-1542 (2007). [CrossRef]
  23. F. Chen, Y. Tan, D. Jaque, L. Wang, X. L. Wang, and K. M. Wang, "Active waveguide in Nd3+:MgO:LiNbO3 crystal produced by low-dose carbon ion implantation," Appl. Phys. Lett. 92, 021110 (2008). [CrossRef]
  24. G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, "Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization," J. Appl. Phys. 92, 6477-6483 (2002). [CrossRef]
  25. J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabanes, "Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation," Appl. Phys. Lett. 86, 183501 (2005). [CrossRef]
  26. J. Olivares, A. García-Navarro, G. García, A. Méndez, F. Agulló-López, A. García-Cabañes, M. Carrascosa, and O. Caballero, "Nonlinear optical waveguides generated in lithium niobate by swift-ion irradiation at ultralow fluences," Opt. Lett. 32, 2587-2589 (2007). [CrossRef] [PubMed]
  27. P. J. Chandler and F. L. Lama, "A new approach to the determination of planar waveguide profiles by means of a non-stationary mode index calculation," Opt. Acta 33, 127-142 (1986). [CrossRef]
  28. J. E. Goell and R. D. Standly, "Sputtered glass waveguide for integrated optical circuits," Bell Syst. Technol. J. 48, 3445-3448 (1969).
  29. J. Shibayama, K. Matsubara, M. Sekiguchi, J. Yamauchi, and H. Nakano, "Efficient nonuniform schemes for paraxial and wide-angle finite-difference beam propagation methods," J. Lightwave Technol. 17, 677-683 (1999). [CrossRef]
  30. Rsoft Design Group, Computer software BeamPROP, http://www.rsoftdesign.com.
  31. K. Buse, J. Imbrock, E. Krätzig, and K. Peithmann, "Photorefractive effects in LiNbO3 and LiTaO3," in Photorefractive Materials and Their Applications 2: Materials, P. Günter and J.-P. Huignard, eds. (Springer, New York, 2007).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited