OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 14 — Jul. 7, 2008
  • pp: 10493–10500

Fourier fluorescence spectrometer for excitation emission matrix measurement

Leilei Peng, Joseph A. Gardecki, Brett E. Bouma, and Guillermo J. Tearney  »View Author Affiliations

Optics Express, Vol. 16, Issue 14, pp. 10493-10500 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (285 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate a fluorescence spectrometer that utilizes principles of Fourier transform spectroscopy to measure excitation emission matrices (EEM) rapidly and with high spectral resolution. For this EEM fluorometer, incoherent excitation light is first input into a differential-delay scanning Michelson interferometer. Light from the output port excites sample fluorescence. The fluorescence remitted from the sample is directed to a second Michelson interferometer, whose differential-delay scanning is synchronized with the first interferometer. The EEM is obtained by two-dimensional Fourier analysis of the detected signal from the output port of the second interferometer. EEM results from the system are verified by comparing with results from a standard spectrometer. The system provides a wide spectral range, adjustable spectral resolution, and fast EEM acquisition speed, which allows EEM’s to be acquired in 40 seconds at a spectral resolution of 81-cm-1.

© 2008 Optical Society of America

OCIS Codes
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence
(300.6300) Spectroscopy : Spectroscopy, Fourier transforms

ToC Category:

Original Manuscript: March 31, 2008
Revised Manuscript: March 31, 2008
Manuscript Accepted: June 9, 2008
Published: June 30, 2008

Leilei Peng, Joseph A. Gardecki, Brett E. Bouma, and Guillermo J. Tearney, "Fourier fluorescence spectrometer for excitation emission matrix measurement," Opt. Express 16, 10493-10500 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. B. Sinclair, D. M. Haaland, J. A. Timlin, and H. D. T. Jones, "Hyperspectral confocal microscope," Appl. Opt. 45, 6283-6291 (2006). [CrossRef] [PubMed]
  2. V. L. Sutherland, J. A. Timlin, L. T. Nieman, J. F. Guzowski, M. K. Chawla, P. F. Worley, B. Roysame, B. L. McNaughtona, M. B. Sinclair, and C. A. Barnes, "Advanced imaging of multiple mRNAs in brain tissue using a custom hyperspectral imager and multivariate curve resolution," J. Neurosci. Methods 160, 144-148 (2007). [CrossRef]
  3. T. Zimmermann, J. Rietdorf, and R. Pepperkok, "Spectral imaging and its applications in live cell microscopy," FEBS Letters 546, 87 (2003). [CrossRef] [PubMed]
  4. M. Gouzman, N. Lifshitz, S. Luryi, O. Semyonov, D. Gavrilov, and V. Kuzminskiy, "Excitation-emission fluorimeter based on linear interference filters," Appl. Opt. 43, 3066-3072 (2004). [CrossRef] [PubMed]
  5. S. J. Hart and R. D. JiJi, "Light emitting diode excitation emission matrix fluorescence spectroscopy," Analyst 127, 1693-1699 (2002). [CrossRef]
  6. M. G. Müller, A. Wax, I. Georgakoudi, R. R. Dasari, and M. S. Feld, "A reflectance spectrofluorimeter for real-time spectral diagnosis of disease," Rev. Sci. Inst. 73, 3933-3937 (2002). [CrossRef]
  7. A. R. Muroski, K. S. Booksh, and M. L. Myrick, "Single-Measurement Excitation/Emission Matrix Spectrofluorometer for Determination of Hydrocarbons in Ocean Water. 1. Instrumentation and Background Correction," Anal. Chem. 68, 3534-3538 (1996). [CrossRef]
  8. C. D. Tran and R. J. Furlan, "Spectrofluorometer Based on Acousto-Optic Tunable Filters for Rapid Scanning and Multicomponent Sample Analyses," Anal. Chem. 65, 1675-1681 (1993). [CrossRef] [PubMed]
  9. R. A. Zângaro, J. Landulfo Silveira, R. Manoharan, G. Zonios, I. Itzkan, R. R. Dasari, J. V. Dam, and M. S. Feld, "Rapid multiexcitation fluorescence spectroscopy system for in vivo tissue diagnosis," Appl. Opt. 35, 5211-5219 (1996). [CrossRef] [PubMed]
  10. A. F. Zuluaga, U. Utzinger, A. Durkin, H. Fuchs, A. Gillenwater, R. Jacob, B. Kemp, J. Fan, and R. Richards-kortum, "Fluorescence Excitation Emission Matrices of Human Tissue: A System for in Vivo Measurement and Method of Data Analysis," Appll. Spectrosc. 53, 302-311 (1999). [CrossRef]
  11. R. Heintzmann, K. A. Lidke, and T. M. Jovin, "Double-pass Fourier transform imaging spectroscopy," Opt. Exp. 12, 753-763 (2004). [CrossRef]
  12. J. T. Motz, D. Yelin, B. J. Vakoc, B. E. Bouma, and G. J. Tearney, "Spectral- and frequency-encoded fluorescence imaging," Opt. Lett. 30, 2760-2762 (2005). [CrossRef] [PubMed]
  13. L. Peng, J. T. Motz, R. W. Redmond, B. E. Bouma, and G. J. Tearney, "Fourier transform emission lifetime spectrometer," Opt. Lett. 32, 421-423 (2007). [CrossRef] [PubMed]
  14. L. Greengard and J.-Y. Lee, "Accelerating the Nonuniform Fast Fourier Transform," Siam Rev. 46, 443-454 (2004). [CrossRef]
  15. J. A. Gardecki and M. Maroncelli, "Set of Secondary Emission Standards for Calibration of the Spectral Responsivity in Emission Spectroscopy," Appl. Spec. 52, 1179-1189 (1998). [CrossRef]
  16. J. R. Lakowicz, Principles of fluorescence spectroscopy, 2nd ed. (Kluwer Academic/Plenum Publishers, New York, 1999).
  17. G. Genty, S. Coen, and J. M. Dudley, "Fiber supercontinuum sources (Invited)," J. Opt. Soc. Am. B 24, 1771-1785 (2007). [CrossRef]
  18. G. J. Tearney, B. E. Bouma, and J. G. Fujimoto, "High-speed phase- and group-delay scanning with a grating-based phase control delay line," Opt. Lett. 22, 1811-1813 (1997). [CrossRef]
  19. W. Y. Oh, S. H. Yun, G. J. Tearney, and B. E. Bouma, "115 kHz tuning repetition rate ultrahigh-speed wavelength-swept semiconductor laser," Opt. Lett. 30, 3159-3161 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited